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Former Decoding Algorithms for
Reed-Solomon codes



Reed-Solomon codes

Let x = (x1, . . . , xn) ∈ Fn
q such that xi 6= xj for all i 6= j . Given

k ∈ N such that k ≤ n,

RS [n, k](x) := {(f (x1), . . . , f (xn)) | f ∈ Fq[X ]<k}.

RS [n, k] is a linear code of length n and dimension k .
Reed-Solomon codes are MDS, that is d = n − k + 1.

Notation: evx(f ) = (f (x1), . . . , f (xn)).
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Problem

Let C = RS [n, k] ⊆ Fn
q and y ∈ Fn

q. Given t ∈ N, find a
codeword c such that

d(y , c) ≤ t.

Hypothesis

There exist c = (evx(f )) ∈ C with deg(f ) < k and
e = (e1, . . . , en) ∈ Fn

q with w(e) = t such that

y = c + e.

We denote the support of the error vector by

I = {i ∈ {1, . . . , n} | ei 6= 0}.
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Algorithms for Reed Solomon codes

t ≤
⌊
d−1

2

⌋
Berlekamp-Welch [1]

[1] L. R. Welch, E.R.Berlekamp. Error Correction for Algebraic
Block Codes. United States Patent, 1986.
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Berlekamp-Welch algorithm

Key Equations (Roth)

Let Λ(X ) :=
∏

i∈I (X − xi ). Then, for all i = 1, . . . , n it holds

Λ(xi )yi = Λ(xi )f (xi ).

Linearisation
BW Problem: find (λ, γ) with deg(λ) ≤ t and deg(γ) ≤ t + k − 1
such that

λ(xi )yi = γ(xi ) ∀i = 1, . . . , n.

Theorem

If t ≤ d−1
2 , then for all solutions (λ, γ) to BW Problem with

λ 6= 0, it holds γ
λ = f .
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Algorithms for Reed Solomon codes

t ≤
⌊
d−1

2

⌋
Berlekamp-Welch

t >
⌊
d−1

2

⌋
Sudan [2]
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Algorithms for Reed Solomon codes

t ≤
⌊
d−1

2

⌋
Berlekamp-Welch

t >
⌊
d−1

2

⌋
Sudan [2]

[2] M. Sudan. Decoding of Reed-Solomon codes beyond the
error-correction bound. Journal of Complexity, 1997.
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Let us consider the key equations of Berlekamp-Welch algorithm

Λ(xi )f (xi )− Λ(xi )yi = 0 ∀i = 1, . . . , n.

New formulation of BW Problem for t = n−k
2

Look for a polynomial Q(X ,Y ) = Q0(X ) + Q1(X )Y such that

• Q(xi , yi ) = 0 for all i = 1, . . . , n;

• deg(Qj) < n − t − j(k − 1) for j = 0, 1.

Berlekamp-Welch algorithm (new formulation)

• find Q(X ,Y ) 6= 0 as above;

• return f = −Q0
Q1

.
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Sudan algorithm ` ≥ 1

Interpolation problem

Find Q(X ,Y ) = Q0(X ) + · · ·+ Q`(X )Y ` ∈ Fq[X ,Y ] such that

• Q(xi , yi ) = 0 for all i = 1, . . . , n;

• deg(Qj) < n − t − j(k − 1) for all j = 0, . . . , `.

Theorem

Le Q(X ,Y ) 6= 0 be as above. If f (X ) is such that deg(f ) < k

and d(evx(f ), y) ≤ t, then (Y − f (X ))|Q(X ,Y ).

Sudan algorithm

• find Q(X ,Y ) 6= 0 as above;

• find the factors of Q(X ,Y ) linear in Y .
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Remark

∃Q(X ,Y ) 6= 0 as above =⇒ Sudan algorithm works

A sufficient condition for the existence of such a Q(X ,Y ) 6= 0 is

#equations < #unknowns.

That gives for a general ` the decoding radius

t ≤ 2n`− k`(`+ 1) + `(`+ 1)− 2
2(`+ 1)

.

Complexity

The most expensive step is the interpolation that gives O(n3`).
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Algorithms for Reed Solomon codes

t ≤
⌊
d−1

2

⌋
Berlekamp-Welch

t >
⌊
d−1

2

⌋
Sudan

Power Decoding [3]
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Algorithms for Reed Solomon codes

t ≤
⌊
d−1

2

⌋
Berlekamp-Welch

t >
⌊
d−1

2

⌋
Sudan

Power Decoding [3]

[3] G. Schmidt, V. R. Sidorenko, M. Bossert. Syndrome Decoding
of Reed-Solomon Codes Beyond Half of the Minimum Distance
based on Shift-Register Synthesis. IEEE Transactions on
Information Theory, 2010.
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Star (Schur) Product
Given a = (a1, . . . , an) and b = (b1, . . . , bn) in Fn

• a ∗ b = (a1b1, . . . , anbn);

• a∗2 = a ∗ a.

Given A,B ⊆ Fn

• A ∗ B = spanF({a ∗ b | a ∈ A, b ∈ B});
• A∗2 = A ∗ A.
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Power Decoding algorithm ` = 2

Let us define e ′ this way

y∗2 = c∗2 + 2c ∗ e + e∗2︸ ︷︷ ︸
e′

.

Lemma

We get supp(e ′) ⊆ I = supp(e).

Key Equations (Rosenkilde)

Let Λ(X ) :=
∏

i∈I (X − xi ). Then, for all i = 1, . . . , n it holdsΛ(xi )yi = Λ(xi )f (xi )

Λ(xi )y
2
i = Λ(xi )f

2(xi )
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Linearisation

PwDc Problem: find (λ, γ1, γ2) with deg(λ) ≤ t and
deg(γi ) ≤ t + i(k − 1) for i = 1, 2 such thatλ(xi )yi = γ1(xi ) ∀i = 1, . . . , n

λ(xi )y
2
i = γ2(xi ) ∀i = 1, . . . , n.

Power Decoding algorithm

• find the solution space S to PwDc Problem;

• pick (λ, γ1, γ2) in S with λ 6= 0 with the minimum degree;

• if λ|γ1, return γ1
λ .

Remark

(Λ,Λf ,Λf 2) is a solution for PwDc Problem.
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A necessary condition to have a solution space of dimension
smaller than two, is to have

#unknowns ≤ #equations + 1.

That gives for a general ` the decoding radius

t ≤ 2n`− k`(`+ 1) + `(`− 1)

2(`+ 1)
.

Complexity
The cost of the algorithm is the one to solve a linear system of n`
equations in O(n`) unknowns, that is O(n3`3).
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Algorithms for Reed Solomon codes

t ≤
⌊
d−1

2

⌋
Berlekamp-Welch

Error Correcting Pairs [4]
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⌊
d−1
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Power Decoding
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Algorithms for Reed Solomon codes

t ≤
⌊
d−1

2

⌋
Berlekamp-Welch Error Correcting Pairs [4]

t >
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d−1

2

⌋
Sudan

Power Decoding

[4] R. Pellikaan. On decoding by error location and dependent sets
of error positions. Discrete Mathematics, 1992.
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Error Correcting Pairs algorithm



Error Correcting Pairs algorithm:

• Localisation of errors: find J such that I ⊆ J;

• Syndromes linear system: recover e.

Error Correcting Pairs (ECP)

Given a linear code C ⊆ Fn
q, a couple of linear codes (A,B) with

A,B ⊆ Fn
q is a t-error correcting pair for C if

• A ∗ B ⊆ C⊥;

• dim(A) > t;

• d(B⊥) > t;

• d(A) + d(C ) > n.
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Theorem (R. Pellikaan, 1992)
Let C ⊆ Fn

q be a linear code. If there exists a t-error correcting
pair for C , then for all y ∈ Fn

q such that

y = c + e,

with c ∈ C and w(e) ≤ t, the ECP algorithm recovers c with
complexity O(n3).

Proposition
If a linear code C has a t-error correcting pair, then

t ≤
⌊d(C )− 1

2

⌋
.
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Given J = {j1, . . . , js} ⊂ {1, . . . , n} and x = (x1, . . . , xn) ∈ Fn
q

• xJ := (xj1 , . . . , xjs ) (puncturing);

• Z (x) := {i ∈ {1, . . . , n} | xi = 0}.

Moreover, if A ⊆ Fn
q

• AJ := {aJ | a ∈ A} ⊆ F|J|q ;

• Z (A) := {i ∈ {1, . . . , n} | ai = 0 ∀a ∈ A};
• A(J) := {a ∈ A | aJ = 0} ⊆ Fn

q (shortening).
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Localisation of errors

We define M := {a ∈ A | 〈a ∗ y , b〉 = 0 ∀b ∈ B}.
Lemma

Let y , I = supp(e) and M as above. If A ∗ B ⊆ C⊥, then

• A(I ) ⊆ M ⊆ A;

• if d(B⊥) > t, then A(I ) = M;

• if dim(A) > t, then A(I ) 6= 0.

Proof of A(I ) ⊆ M: given a ∈ A(I ), we get for all b ∈ B

〈a ∗ y , b〉 = 〈a ∗ c , b〉︸ ︷︷ ︸
〈a∗b,c〉

+ 〈a ∗ e, b〉︸ ︷︷ ︸
〈0,b〉

= 0.

−→ we take J := Z (M).
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Recovering e

Let H ∈M(n,m), and H i its columns. Given J ⊆ {1, . . . ,m}, we
define

HJ = (H j)j∈J .

Let us consider a full rank parity check matrix H for C .

Lemma

If d(A) + d(C ) > n and I ⊆ J, then there exists an unique
solution for the system

HJ · ET = H · yT .

−→ we recover e.
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PECP for Reed-Solomon codes



Let C ⊆ Fn
q be a RS[n,k] code. There exists f ∈ Fq[x ]<k such that

c = (evx(f )). Let us take

A = RS [n, t + 1], B⊥ = RS [n, t + k].

dim(A) > t

A ∗ B ⊆ C⊥

d(A) + d(C ) > n

obvious
A ∗ C = B⊥

t < d(C )

Proposition

We have that d(B⊥) > t if and only if

t ≤
⌊d(C )− 1

2

⌋
.
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Berlekamp-Welch key equations and the choice of M

Berlekamp Welch algorithm’s key equation

Given Λ(X ) =
∏

i∈I (X − xi ) and N(X ) := Λ(X )f (X ), it holds

evx(Λ) ∗ y = evx(N).

We get

• (N(x1), . . . ,N(xn)) ∈ B⊥ = RS [t + k];

• (Λ(x1), . . . ,Λ(xn)) ∈ A(I ) = RS [t + 1](I );

• (Λ(x1), . . . ,Λ(xn)) ∈ {a ∈ A | 〈a ∗ y , b〉 = 0 ∀b ∈ B}︸ ︷︷ ︸
M

.
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Algorithms for Reed Solomon codes

t ≤
⌊
d−1

2

⌋
Berlekamp-Welch Error Correcting Pairs

t >
⌊
d−1

2

⌋
Sudan

Power Decoding
?
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Power Error Correcting Pairs algorithm with power ` = 2

Error Locating Pair

Given A,B,C linear codes of length n, (A,B) is a t-error locating
pair (ELP) for C if

• A ∗ B ⊆ C⊥;

• dim(A) > t;

• d(A) + d(C ) > n.

Pellikaan, 1992:
If I is an independent t-set of error positions with respect
to B , where (A,B) is a t-error locating pair for C , then
the algorithm corrects any word with error supported at I .

Before we used “If A ∗ B ⊆ C⊥ and d(B⊥) > t, then A(I ) = M.”
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Let us define

• N1(X ) := Λ(X )f (X );

• N2(X ) := Λ(X )f 2(X ).

Power Decoding algorithm’s key equations

Given Λ(X ) =
∏

i∈I (X − xi ) as before, thenevx(Λ) ∗ y = evx(N1)

evx(Λ) ∗ y∗2 = evx(N2)
.
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Hence, if we consider A = RS [n, t + 1], B⊥ = RS [n, t + k] as
before, we get

• (N1(x1), . . . ,N1(xn)) ∈ B⊥;

• (N2(x1), . . . ,N2(xn)) ∈ B⊥ ∗ C ;

• (Λ(x1), . . . ,Λ(xn)) ∈ A(I ), M1 ∩M2.

where M1 and M2 are defined this way

M1 :={a ∈ A | 〈a ∗ y , b〉 = 0 ∀b ∈ B},
M2 :={a ∈ A | 〈a ∗ y∗2, v〉 = 0 ∀v ∈ (B⊥ ∗ C )⊥}.

−→ we take M = M1 ∩M2.
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Lemma

If A ∗ B ⊆ C⊥, then A(I ) ⊆ M = M1 ∩M2 ⊆ A.

PECP algorithm:

• compute M = M1 ∩M2 (linear system);

• compute J = Z (M);

• solve the syndrom linear system.

This algorithm can be runned on all codes with an ELP.

Necessary condition to have M = A(I )?

Since M(I ) = A(I ), we get the implications:

M = A(I ) ⇐⇒ M(I ) = M ⇐⇒ MI = {0}.

28/35



Lemma

If A ∗ B ⊆ C⊥, then A(I ) ⊆ M = M1 ∩M2 ⊆ A.

PECP algorithm:

• compute M = M1 ∩M2 (linear system);

• compute J = Z (M);

• solve the syndrom linear system.

This algorithm can be runned on all codes with an ELP.
Necessary condition to have M = A(I )?

Since M(I ) = A(I ), we get the implications:

M = A(I ) ⇐⇒ M(I ) = M ⇐⇒ MI = {0}.

28/35



Lemma

If A ∗ B ⊆ C⊥, then A(I ) ⊆ M = M1 ∩M2 ⊆ A.

PECP algorithm:

• compute M = M1 ∩M2 (linear system);

• compute J = Z (M);

• solve the syndrom linear system.

This algorithm can be runned on all codes with an ELP.
Necessary condition to have M = A(I )?

Since M(I ) = A(I ), we get the implications:

M = A(I ) ⇐⇒ M(I ) = M ⇐⇒ MI = {0}.

28/35



Given a ∈ A, we have by definition of M1

a ∈ M1 ⇐⇒ 〈a ∗ y , b〉 = 0 ∀b ∈ B.

If A ∗ B ⊆ C⊥, this is equivalent to aI ∈ (e ∗ B)⊥I .

In the same way, given a ∈ A, it holds

a ∈ M2 ⇐⇒ aI ∈ (e ′ ∗ (B⊥ ∗ C )⊥)⊥I .

Lemma

We have (M1 ∩M2)I = (e ∗ B)⊥I ∩ (e ′ ∗ (B⊥ ∗ C )⊥)⊥I ∩ AI .
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Remark

Since A = RS [n, t + 1] is MDS, then AI = Ft
q.

Hence (M1 ∩M2)I = (e ∗ B)⊥I ∩ (e ′ ∗ (B⊥ ∗ C )⊥)⊥I .

A necessary condition for (M1 ∩M2)I to be the null space is

dim((e ∗ B)⊥I ) + dim((e ′ ∗ (B⊥ ∗ C )⊥)⊥I ) ≤ t.

This inequality implies the following

Necessary condition

dim(B) + dim((B⊥ ∗ C )⊥) ≥ t.
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Decoding radius for Reed-Solomon codes and ` = 2

We get, as for the Power Decoding algorithm with power 2,

t ≤ 2n − 3k + 1
3

.

It is possible to write the algorithm for a general power `.

For Reed-Solomon codes, PECP has the same decoding radius as
the Power Decoding algorithm, that is tpow = 2n`−k`(`+1)+`(`−1)

2(`+1) .
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Complexity

PECP(`):

(i) find M =
⋂`

i=1 Mi ;

(ii) given J, find c .

The main cost is the one of step (i), which reduces to a linear
system of O(n`) equations in

t + 1 = O

(
2n`+ `(`+ 1) + 2

2(`+ 1)

)
= O (n)

unknowns. Hence we get the cost O(n3`), while the cost of Power
Decoding algorithm is O(n3`3).
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PECP for Algebraic Geometry
codes



Let χ be a smooth projective curve, P = {P1, . . . ,Pn} ⊆ χ, G a
divisor for χ with supp(G ) ∩ P = ∅ and

C = CL(χ,P,G ).

Theorem
There exists a t-error locating pair for C such that the necessary
condition gives the correcting radius

t ≤ 2n`− `(`+ 1) deg(G )− 2`
2(`+ 1)

− g︸ ︷︷ ︸
tbasic ,tpow [SW 98]

+
g

`+ 1
.

As for Reed-Solomon codes, the PECP algorithm costs O(n3`),
while the Power Decoding algorithm costs O(n3`3).
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Future tasks:

• study of the failure cases of the Power Decoding algorithm and
the PECP algorithm for Reed-Solomon codes;

• examine the possibility to improve PECP algorithm’s decoding
radius for algebraic-geometry codes;

• is it possible to design a multiplicity version of ECP algorithm?
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Thanks for your attention!
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