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Former Decoding Algorithms for
Reed-Solomon codes



RS[n, k] is a linear code of length n and dimension k.
Reed-Solomon codes are MDS, thatis d = n— k + 1.

Notation: evy(f) = (f(x1),...,f(xn))
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We denote the support of the error vector by

I={ie{l,....n}|e 0.




Algorithms for Reed Solomon codes

t < L%J Berlekamp-Welch [1]

[1] L. R. Welch, E.R.Berlekamp. Error Correction for Algebraic
Block Codes. United States Patent, 1986.
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Berlekamp-Welch algorithm
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Berlekamp-Welch algorithm

Linearisation
BW Problem: find (\,~) with deg(\) < t and deg(y) <t+ k—1
such that

Ax)yi =v(x) Vi=1,...,n.
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Algorithms for Reed Solomon codes

t < L%J Berlekamp-Welch
t> |41 ] SudJn 2]

[2] M. Sudan. Decoding of Reed-Solomon codes beyond the
error-correction bound. Journal of Complexity, 1997.
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Let us consider the key equations of Berlekamp-Welch algorithm

ANx)f(x) = A(xi)yi =0 Vi=1,...,n.
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Let us consider the key equations of Berlekamp-Welch algorithm

ANx)f(x) = A(xi)yi =0 Vi=1,...,n.

Berlekamp-Welch algorithm (new formulation)

e find Q(X,Y) # 0 as above;
e return f = —%Q.
1
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Sudan algorithm 7/ >1
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Sudan algorithm 7/ >1




Sudan algorithm 7/ >1

Sudan algorithm

e find Q(X,Y) # 0 as above;
e find the factors of Q(X, Y) linear in Y.
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A sufficient condition for the existence of such a Q(X,Y) # 0 is
#equations < #unknowns.

That gives for a general ¢ the decoding radius

206 — kO(C+1) + £(C+1) — 2
t < .
= 2(0+1)
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Algorithms for Reed Solomon codes

t < {%J Berlekamp-Welch
t> {iglJ Suﬁan
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Algorithms for Reed Solomon codes

t < L%J Berlekamp-Welch

t > L%J Sudan

Power Decoding [3]
[3] G. Schmidt, V. R. Sidorenko, M. Bossert. Syndrome Decoding
of Reed-Solomon Codes Beyond Half of the Minimum Distance
based on Shift-Register Synthesis. IEEE Transactions on
Information Theory, 2010.
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Star (Schur) Product
Given a = (a1,...,an) and b= (by,..., b,) in F"

e ax b= (aib1,...,anbn);

e a2 =3axa.
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Star (Schur) Product
Given a = (a1,...,an) and b= (by,..., b,) in F"

e ax b= (aib1,...,anbn);

e a2 =3axa.

Given A,B C "

e AxB=spang({axb|ac A bec B}),
o A = Ax A
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Power Decoding algorithm ¢ =2

Let us define € this way
y2=c*?42cxe+e*2.
—_——

e/
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Power Decoding algorithm ¢ =2

Let us define €’ this way
y2=c*?42cxe+e*2.
———

el
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Power Decoding algorithm ¢ =2

Let us define €’ this way

y*2=c242cxe+e*?.
—_———

el




Linearisation

PwDc Problem: find (A, 71,72) with deg(A) < t and
deg(vyi) < t+i(k—1) for i = 1,2 such that

Axi)yi=m(x) Vi=1,....n
A2 =7(x) Yi=1,...,n.

Power Decoding algorithm

e find the solution space S to PwDc Problem;
e pick (A,71,72) in S with A # 0 with the minimum degree;

H 1
o if Xy, return 3.
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A necessary condition to have a solution space of dimension
smaller than two, is to have

#unknowns < F#equations + 1.

That gives for a general ¢ the decoding radius

2nl — kO(¢+ 1)+ £(¢—1)
- 2(0+1) ’
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A necessary condition to have a solution space of dimension
smaller than two, is to have

#unknowns < #equations + 1.

That gives for a general £ the decoding radius

2n0 — k(0 + 1) + £(¢ — 1)

= 2(0+1)
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Algorithms for Reed Solomon codes

t < {%J Berlekamp-Welch

t> L%J Sudan
Power Decoding
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Algorithms for Reed Solomon codes

t < L%J Berlekamp-Welch Error Correcting Pairs [4]

t> L%J Sudan
Power Decoding

[4] R. Pellikaan. On decoding by error location and dependent sets
of error positions. Discrete Mathematics, 1992.
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Error Correcting Pairs algorithm




Error Correcting Pairs algorithm:

e Localisation of errors: find J such that | C J;
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Given J = {j1,...,Js} C{1,...,n} and x = (x1,...,x,) € Fy

e x; = (Xj,...,X;) (puncturing);

o Z(x)={ie{l,...,n}| x;=0}.
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Given J = {j1,...,Js} C{1,...,n} and x = (x1,...,x,) € Fy

e x; = (Xj,...,X;) (puncturing);

o Z(x)={ie{l,...,n}| x;=0}.

Moreover, if A C IFZ

o Ayi=1{ay|ac A CF;;
o Z(A)={ie{l,....,n} |aj=0 Vae A},
e A(J) ={ae€ Ala, =0} CFy (shortening).
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Localisation of errors

We define M :={ac A|(axy,b) =0 Vb e B}.
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Localisation of errors

We define M :={ae€ A|(axy,b) =0 Vb e B}.

Proof of A(/) C M: given a € A(l), we get for all be B

(axy,b)y =(axc,b)+(axe,b)y=0.
—_——  ——
(axb,c) (0,b)
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Localisation of errors

We define M :={ae€ A|(axy,b) =0 Vb e B}.

Proof of A(/) C M: given a € A(l), we get for all be B

(axy,b)y =(axc,b)+(axe,b)y=0.
—_——  ——
(axb,c) (0,b)

— we take J = Z(M). 20/35



Recovering e

Let H € M(n, m), and H' its columns. Given J C {1,...,m}, we
define
Hy = (Hy<.

Let us consider a full rank parity check matrix H for C.
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Recovering e

Let H € M(n, m), and H' its columns. Given J C {1,...,m}, we
define
Hy = (Hy<.

Let us consider a full rank parity check matrix H for C.

—> WEe recover €.
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PECP for Reed-Solomon codes




Let C C g be a RS[n k] code. There exists f € Fq[x]<x such that
¢ = (evx(f)). Let us take

A=RS[nt+1],  B*=RS[nt+Kk.
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Let C C IFj be a RS[n k] code. There exists f € Fg[x]< such that
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Berlekamp-Welch key equations and the choice of M

We get

e (N(x1),...,N(xn)) € B+ = RS[t + K];
o (A(x1),...,\(xn)) € A(l) = RS[t + 1](/);
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Berlekamp-Welch key equations and the choice of M

We get

e (N(x1),...,N(xn)) € B+ = RS[t + K];
o (A(x1),...,A(xn)) € A(l) = RS[t + 1](/);
o (AN(x1),...,A(xn)) e{ac Al {axy,b)=0 Vbe B};.

-~

M
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Algorithms for Reed Solomon codes

t < {%J Berlekamp-Welch Error Correcting Pairs

t> L%J Sudan 7
Power Decoding
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Algorithms for Reed Solomon codes

t < L%J Berlekamp-Welch Error Correcting Pairs

t> |45 ] Sudan ?
Power Decoding
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Power Error Correcting Pairs algorithm with power ¢ = 2

Pellikaan, 1992:
If | is an independent t-set of error positions with respect
to B, where (A, B) is a t-error locating pair for C, then
the algorithm corrects any word with error supported at |.

25/35



Power Error Correcting Pairs algorithm with power ¢ = 2

Pellikaan, 1992:
If | is an independent t-set of error positions with respect
to B, where (A, B) is a t-error locating pair for C, then
the algorithm corrects any word with error supported at |.

Before we used “If Ax B C C* and d(B*) > t, then A(/) = M.”
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Let us define

o Ni(X) = A(X)f(X);
o Na(X) == A(X)F2(X).

26/35



Let us define

o Ny(X) = A(X)F(X);
o Nao(X) = A(X)F3(X).
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Hence, if we consider A= RS[n,t + 1], B- = RS[n, t + k] as
before, we get

° (Nl(Xl)a ce Nl(Xn)) S Bl;
° (NQ(Xl), bo0g N2(Xn)) S Bt « C;
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Hence, if we consider A= RS[n,t + 1], B- = RS[n, t + k] as
before, we get

° (Nl(Xl),...,Nl(Xn)) S Bl;
° (NQ(Xl), bo0g N2(Xn)) S Bt « C;
° (/\(Xl)7 e ,/\(Xn)) S A(/), My N M.

where My and M, are defined this way

My ={ae A|(axy,b)=0 Vb€ B},
My:={ac Al (axy? v)=0 Vve (Bt+C)'}.
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Hence, if we consider A= RS[n,t + 1], B- = RS[n, t + k] as
before, we get

o (Ni(x), ..., Ni(xn)) € BY;

° (NQ(Xl), bo0g N2(Xn)) S Bt « C;

> (A(X1)7 000 7/\(Xn)) € A(’)a My N Ms.
where My and M, are defined this way

My ={ae A|(axy,b)=0 Vb€ B},
My:={ac Al (axy? v)=0 Vve (Bt+C)'}.

— we take M = My N Ms.
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PECP algorithm:

e compute M = M; N M (linear system);
e compute J = Z(M);

e solve the syndrom linear system.

This algorithm can be runned on all codes with an ELP.
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PECP algorithm:

e compute M = M; N M (linear system);
e compute J = Z(M);

e solve the syndrom linear system.

This algorithm can be runned on all codes with an ELP.
Necessary condition to have M = A(/)?

Since M(I) = A(I), we get the implications:

M=A(l) < M()=M < M, ={0}.
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Given a € A, we have by definition of M
aeM, < (axy,b)=0 VbeB.

If Ax B C C, this is equivalent to a; € (e * B)7-.
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Given a € A, we have by definition of M
aeM < (axy,b)=0 VbeB.

If Ax B C C*, this is equivalent to a; € (e * B),L

In the same way, given a € A, it holds

ac M < a c(*(BH+C)h)t.
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Hence (My N My); = (e x B)f n (e * (B+ x C)4)f.

30/35



Hence (My N My); = (e x B)f n (e * (B+ x C)4)f.
A necessary condition for (M; N M), to be the null space is

dim((e * B);-) +dim((e’ * (BX % C)1){) < t.

This inequality implies the following
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It is possible to write the algorithm for a general power /.
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It is possible to write the algorithm for a general power /.

For Reed-Solomon codes, PECP has the same decoding radius as

the Power Decoding algorithm, that is tyon = 2"2_1(%@3;%“_1)
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Complexity

PECP(/):
(i) find M =N, M;;
(i) given J, find c.

The main cost is the one of step (i), which reduces to a linear
system of O(nf) equations in

2nl + (L +1)+2
2(0+1)

t—|—1:O< >:O(n)

unknowns. Hence we get the cost O(n3¢), while the cost of Power
Decoding algorithm is O(n3¢3).
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PECP for Algebraic Geometry
codes




Let x be a smooth projective curve, P = {P1,...,P,} Cx, G a
divisor for x with supp(G) NP = () and

C=0C(x,P,G).

As for Reed-Solomon codes, the PECP algorithm costs O(n3(),
while the Power Decoding algorithm costs O(n3¢3).
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Future tasks:

e study of the failure cases of the Power Decoding algorithm and
the PECP algorithm for Reed-Solomon codes;

e examine the possibility to improve PECP algorithm's decoding
radius for algebraic-geometry codes;

e is it possible to design a multiplicity version of ECP algorithm?
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Thanks for your attention!
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