An extension of the Error Correcting Pairs algorithm

Alain Couvreur <u>Isabella Panaccione</u>

Inria, LIX

GT BAC 18/04/2018 Former Decoding Algorithms for Reed-Solomon codes

Error Correcting Pairs algorithm

PECP for Reed-Solomon codes

PECP for Algebraic Geometry codes

Former Decoding Algorithms for Reed-Solomon codes

Reed-Solomon codes

Let $x = (x_1, ..., x_n) \in \mathbb{F}_q^n$ such that $x_i \neq x_j$ for all $i \neq j$. Given $k \in \mathbb{N}$ such that $k \leq n$,

$$RS[n,k](x) := \{(f(x_1), \ldots, f(x_n)) \mid f \in \mathbb{F}_q[X]_{< k}\}.$$

RS[n, k] is a linear code of **length** n and **dimension** k. Reed-Solomon codes are **MDS**, that is d = n - k + 1.

Notation: $ev_x(f) = (f(x_1), ..., f(x_n)).$

Problem

Let $C = RS[n, k] \subseteq \mathbb{F}_q^n$ and $y \in \mathbb{F}_q^n$. Given $t \in \mathbb{N}$, find a codeword c such that

 $\mathsf{d}(y,c) \leq t.$

Problem

Let
$$C = RS[n, k] \subseteq \mathbb{F}_q^n$$
 and $y \in \mathbb{F}_q^n$. Given $t \in \mathbb{N}$, find a codeword c such that

 $\mathsf{d}(y,c) \leq t.$

Hypothesis

There exist
$$c = (ev_x(f)) \in C$$
 with $deg(f) < k$ and $e = (e_1, \dots, e_n) \in \mathbb{F}_q^n$ with $w(e) = t$ such that

$$y = c + e$$
.

We denote the support of the error vector by

$$I = \{i \in \{1, \dots, n\} \mid e_i \neq 0\}.$$

$t \leq \left\lfloor \frac{d-1}{2} \right\rfloor$ Berlekamp-Welch [1]

L. R. Welch, E.R.Berlekamp. Error Correction for Algebraic Block Codes. United States Patent, 1986.

Berlekamp-Welch algorithm

Key Equations (Roth)

Let $\Lambda(X) \coloneqq \prod_{i \in I} (X - x_i)$. Then, for all $i = 1, \dots, n$ it holds

 $\Lambda(x_i)y_i = \Lambda(x_i)f(x_i).$

Berlekamp-Welch algorithm

Key Equations (Roth) Let $\Lambda(X) := \prod_{i \in I} (X - x_i)$. Then, for all i = 1, ..., n it holds $\Lambda(x_i)y_i = \Lambda(x_i)f(x_i)$.

Linearisation

BW Problem: find (λ, γ) with deg $(\lambda) \le t$ and deg $(\gamma) \le t + k - 1$ such that

$$\lambda(x_i)y_i = \gamma(x_i) \quad \forall i = 1, \dots, n.$$

Berlekamp-Welch algorithm

Key Equations (Roth) Let $\Lambda(X) := \prod_{i \in I} (X - x_i)$. Then, for all i = 1, ..., n it holds $\Lambda(x_i)y_i = \Lambda(x_i)f(x_i)$.

Linearisation

BW Problem: find (λ, γ) with deg $(\lambda) \le t$ and deg $(\gamma) \le t + k - 1$ such that

$$\lambda(x_i)y_i = \gamma(x_i) \quad \forall i = 1, \dots, n.$$

Theorem

If $t \leq \frac{d-1}{2}$, then for all solutions (λ, γ) to BW Problem with $\lambda \neq 0$, it holds $\frac{\gamma}{\lambda} = f$.

Berlekamp-Welch

[2] M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. Journal of Complexity, 1997.

Let us consider the key equations of Berlekamp-Welch algorithm

$$\Lambda(x_i)f(x_i) - \Lambda(x_i)y_i = 0 \quad \forall i = 1, \dots, n.$$

New formulation of BW Problem for $t = \frac{n-k}{2}$ Look for a polynomial $Q(X, Y) = Q_0(X) + Q_1(X)Y$ such that

•
$$Q(x_i, y_i) = 0$$
 for all $i = 1, ..., n$;

•
$$\deg(Q_j) < n - t - j(k - 1)$$
 for $j = 0, 1$.

Let us consider the key equations of Berlekamp-Welch algorithm

$$\Lambda(x_i)f(x_i) - \Lambda(x_i)y_i = 0 \quad \forall i = 1, \dots, n.$$

New formulation of BW Problem for $t = \frac{n-k}{2}$ Look for a polynomial $Q(X, Y) = Q_0(X) + Q_1(X)Y$ such that

•
$$Q(x_i, y_i) = 0$$
 for all $i = 1, ..., n$;

•
$$\deg(Q_j) < n - t - j(k - 1)$$
 for $j = 0, 1$.

Berlekamp-Welch algorithm (new formulation)

- find $Q(X, Y) \neq 0$ as above;
- return $f = -\frac{Q_0}{Q_1}$.

Sudan algorithm $\ell \geq 1$

Interpolation problem

Find $Q(X,Y) = Q_0(X) + \dots + Q_\ell(X)Y^\ell \in \mathbb{F}_q[X,Y]$ such that

•
$$Q(x_i, y_i) = 0$$
 for all $i = 1, ..., n;$

•
$$\deg(Q_j) < n - t - j(k - 1)$$
 for all $j = 0, ..., \ell$.

Sudan algorithm $\ell \geq 1$

Interpolation problem

Find $Q(X,Y) = Q_0(X) + \dots + Q_\ell(X)Y^\ell \in \mathbb{F}_q[X,Y]$ such that

•
$$Q(x_i, y_i) = 0$$
 for all $i = 1, ..., n$;

• $\deg(Q_j) < n - t - j(k - 1)$ for all $j = 0, ..., \ell$.

Theorem

Le $Q(X, Y) \neq 0$ be as above. If f(X) is such that $\deg(f) < k$ and $\operatorname{d}(\operatorname{ev}_{x}(f), y) \leq t$, then (Y - f(X))|Q(X, Y).

Sudan algorithm $\ell \geq 1$

Interpolation problem

Find $Q(X,Y) = Q_0(X) + \dots + Q_\ell(X)Y^\ell \in \mathbb{F}_q[X,Y]$ such that

•
$$Q(x_i, y_i) = 0$$
 for all $i = 1, ..., n$;

• $\deg(Q_j) < n - t - j(k - 1)$ for all $j = 0, ..., \ell$.

Theorem

Le $Q(X, Y) \neq 0$ be as above. If f(X) is such that $\deg(f) < k$ and $\operatorname{d}(\operatorname{ev}_{x}(f), y) \leq t$, then (Y - f(X))|Q(X, Y).

Sudan algorithm

- find $Q(X, Y) \neq 0$ as above;
- find the factors of Q(X, Y) linear in Y.

Remark

$\exists Q(X, Y) \neq 0$ as above \implies Sudan algorithm works

Remark

$\exists Q(X, Y) \neq 0$ as above \implies Sudan algorithm works

A sufficient condition for the existence of such a $Q(X, Y) \neq 0$ is

#equations < #unknowns.

That gives for a general ℓ the decoding radius

$$t \leq rac{2n\ell - k\ell(\ell+1) + \ell(\ell+1) - 2}{2(\ell+1)}.$$

Remark

$\exists Q(X, Y) \neq 0$ as above \implies Sudan algorithm works

A sufficient condition for the existence of such a $Q(X, Y) \neq 0$ is

#equations < #unknowns.

That gives for a general ℓ the decoding radius

$$t \leq rac{2n\ell - k\ell(\ell+1) + \ell(\ell+1) - 2}{2(\ell+1)}.$$

Complexity

The most expensive step is the interpolation that gives $O(n^3 \ell)$.

[3] G. Schmidt, V. R. Sidorenko, M. Bossert. Syndrome Decoding of Reed-Solomon Codes Beyond Half of the Minimum Distance based on Shift-Register Synthesis. IEEE Transactions on Information Theory, 2010. Star (Schur) Product Given $a = (a_1, \dots, a_n)$ and $b = (b_1, \dots, b_n)$ in \mathbb{F}^n

•
$$a * b = (a_1 b_1, \dots, a_n b_n);$$

•
$$a^{*2} = a * a$$
.

Star (Schur) Product Given $a = (a_1, \ldots, a_n)$ and $b = (b_1, \ldots, b_n)$ in \mathbb{F}^n

Given $A, B \subseteq \mathbb{F}^n$

• $A * B = \operatorname{span}_{\mathbb{F}}(\{a * b \mid a \in A, b \in B\});$

•
$$A^{*2} = A * A$$
.

Power Decoding algorithm $\ell = 2$

Let us define e' this way

$$y^{*2} = c^{*2} + \underbrace{2c * e + e^{*2}}_{e'}.$$

Power Decoding algorithm $\ell = 2$

Let us define e' this way

$$y^{*2} = c^{*2} + \underbrace{2c * e + e^{*2}}_{e'}$$

Lemma

We get $supp(e') \subseteq I = supp(e)$.

Power Decoding algorithm $\ell = 2$

Let us define e' this way

$$y^{*2} = c^{*2} + \underbrace{2c * e + e^{*2}}_{e'}$$

Lemma

We get $supp(e') \subseteq I = supp(e)$.

Key Equations (Rosenkilde)

Let $\Lambda(X) \coloneqq \prod_{i \in I} (X - x_i)$. Then, for all $i = 1, \dots, n$ it holds

$$\begin{cases} \Lambda(x_i)y_i = \Lambda(x_i)f(x_i) \\ \Lambda(x_i)y_i^2 = \Lambda(x_i)f^2(x_i) \end{cases}$$

Linearisation

PwDc Problem: find $(\lambda, \gamma_1, \gamma_2)$ with deg $(\lambda) \le t$ and deg $(\gamma_i) \le t + i(k-1)$ for i = 1, 2 such that

$$\begin{cases} \lambda(x_i)y_i = \gamma_1(x_i) & \forall i = 1, \dots, n\\ \lambda(x_i)y_i^2 = \gamma_2(x_i) & \forall i = 1, \dots, n. \end{cases}$$

Power Decoding algorithm

- find the solution space \mathcal{S} to PwDc Problem;
- pick $(\lambda, \gamma_1, \gamma_2)$ in S with $\lambda \neq 0$ with the minimum degree;
- if $\lambda | \gamma_1$, return $\frac{\gamma_1}{\lambda}$.

Remark

 $(\Lambda, \Lambda f, \Lambda f^2)$ is a solution for PwDc Problem.

A **necessary condition** to have a solution space of dimension smaller than two, is to have

#unknowns $\leq \#$ equations + 1.

That gives for a general ℓ the decoding radius

$$t\leq rac{2n\ell-k\ell(\ell+1)+\ell(\ell-1)}{2(\ell+1)},$$

A **necessary condition** to have a solution space of dimension smaller than two, is to have

#unknowns $\leq \#$ equations + 1.

That gives for a general ℓ the decoding radius

$$t\leq rac{2n\ell-k\ell(\ell+1)+\ell(\ell-1)}{2(\ell+1)}.$$

Complexity

The cost of the algorithm is the one to solve a linear system of $n\ell$ equations in $O(n\ell)$ unknowns, that is $O(n^3\ell^3)$.

[4] R. Pellikaan. On decoding by error location and dependent sets of error positions. Discrete Mathematics, 1992.

Error Correcting Pairs algorithm

Error Correcting Pairs algorithm:

• Localisation of errors: find J such that $I \subseteq J$;

Error Correcting Pairs algorithm:

- Localisation of errors: find J such that $I \subseteq J$;
- Syndromes linear system: recover *e*.

Error Correcting Pairs algorithm:

- Localisation of errors: find J such that $I \subseteq J$;
- Syndromes linear system: recover e.

Error Correcting Pairs (ECP) Given a linear code $C \subseteq \mathbb{F}_q^n$, a couple of linear codes (A, B) with $A, B \subseteq \mathbb{F}_q^n$ is a *t*-error correcting pair for *C* if

- $A * B \subseteq C^{\perp}$;
- $\dim(A) > t$;
- $d(B^{\perp}) > t$;
- d(A) + d(C) > n.
Theorem (R. Pellikaan, 1992)

Let $C \subseteq \mathbb{F}_q^n$ be a linear code. If there exists a *t*-error correcting pair for *C*, then for all $y \in \mathbb{F}_q^n$ such that

y = c + e,

with $c \in C$ and $w(e) \leq t$, the ECP algorithm recovers c with complexity $O(n^3)$.

Theorem (R. Pellikaan, 1992)

Let $C \subseteq \mathbb{F}_q^n$ be a linear code. If there exists a *t*-error correcting pair for *C*, then for all $y \in \mathbb{F}_q^n$ such that

y = c + e,

with $c \in C$ and $w(e) \leq t$, the ECP algorithm recovers c with complexity $O(n^3)$.

Proposition

If a linear code C has a t-error correcting pair, then

$$t \leq \Big\lfloor \frac{\mathsf{d}(C)-1}{2} \Big\rfloor.$$

Given $J = \{j_1, \ldots, j_s\} \subset \{1, \ldots, n\}$ and $x = (x_1, \ldots, x_n) \in \mathbb{F}_q^n$

•
$$x_J := (x_{j_1}, \ldots, x_{j_s})$$
 (puncturing);

•
$$Z(x) := \{i \in \{1, \ldots, n\} \mid x_i = 0\}.$$

Given $J = \{j_1, \ldots, j_s\} \subset \{1, \ldots, n\}$ and $x = (x_1, \ldots, x_n) \in \mathbb{F}_q^n$

•
$$x_J := (x_{j_1}, \ldots, x_{j_s})$$
 (puncturing);

•
$$Z(x) := \{i \in \{1, \ldots, n\} \mid x_i = 0\}.$$

Moreover, if $A \subseteq \mathbb{F}_q^n$

•
$$A_J := \{a_J \mid a \in A\} \subseteq \mathbb{F}_q^{|J|};$$

•
$$Z(A) \coloneqq \{i \in \{1, \ldots, n\} \mid a_i = 0 \quad \forall a \in A\};$$

Given $J = \{j_1, \ldots, j_s\} \subset \{1, \ldots, n\}$ and $x = (x_1, \ldots, x_n) \in \mathbb{F}_q^n$

•
$$x_J := (x_{j_1}, \ldots, x_{j_s})$$
 (puncturing);

•
$$Z(x) := \{i \in \{1, \ldots, n\} \mid x_i = 0\}.$$

Moreover, if $A \subseteq \mathbb{F}_q^n$

•
$$A_J \coloneqq \{a_J \mid a \in A\} \subseteq \mathbb{F}_q^{|J|};$$

•
$$Z(A) := \{i \in \{1, \ldots, n\} \mid a_i = 0 \quad \forall a \in A\};$$

• $A(J) := \{a \in A \mid a_J = 0\} \subseteq \mathbb{F}_q^n$ (shortening).

We define
$$M := \{a \in A \mid \langle a * y, b \rangle = 0 \ \forall b \in B\}.$$

Lemma

Let y,
$$I = \operatorname{supp}(e)$$
 and M as above. If $A * B \subseteq C^{\perp}$, then

•
$$A(I) \subseteq M \subseteq A;$$

We define
$$M := \{a \in A \mid \langle a * y, b \rangle = 0 \ \forall b \in B\}.$$

Lemma

Let y, I = supp(e) and M as above. If $A * B \subseteq C^{\perp}$, then

- $A(I) \subseteq M \subseteq A;$
- if $d(B^{\perp}) > t$, then A(I) = M;

We define
$$M := \{a \in A \mid \langle a * y, b \rangle = 0 \ \forall b \in B\}.$$

Lemma

Let y, I = supp(e) and M as above. If $A * B \subseteq C^{\perp}$, then

- $A(I) \subseteq M \subseteq A;$
- if $d(B^{\perp}) > t$, then A(I) = M;

• if dim(A) > t, then
$$A(I) \neq 0$$
.

We define
$$M := \{a \in A \mid \langle a * y, b \rangle = 0 \ \forall b \in B\}.$$

Lemma

Let y, I = supp(e) and M as above. If $A * B \subseteq C^{\perp}$, then

• $A(I) \subseteq M \subseteq A;$

• if
$$d(B^{\perp}) > t$$
, then $A(I) = M$;

• if dim
$$(A) > t$$
, then $A(I) \neq 0$.

Proof of $A(I) \subseteq M$: given $a \in A(I)$, we get for all $b \in B$

$$\langle a * y, b \rangle = \underbrace{\langle a * c, b \rangle}_{\langle a * b, c \rangle} + \underbrace{\langle a * e, b \rangle}_{\langle 0, b \rangle} = 0.$$

We define
$$M := \{a \in A \mid \langle a * y, b \rangle = 0 \ \forall b \in B\}.$$

Lemma

Let y, I = supp(e) and M as above. If $A * B \subseteq C^{\perp}$, then

• $A(I) \subseteq M \subseteq A;$

• if
$$d(B^{\perp}) > t$$
, then $A(I) = M$;

• if dim
$$(A) > t$$
, then $A(I) \neq 0$.

Proof of $A(I) \subseteq M$: given $a \in A(I)$, we get for all $b \in B$

$$\langle a * y, b \rangle = \underbrace{\langle a * c, b \rangle}_{\langle a * b, c \rangle} + \underbrace{\langle a * e, b \rangle}_{\langle 0, b \rangle} = 0.$$

 \longrightarrow we take $J \coloneqq Z(M)$.

Recovering e

Let $H \in \mathcal{M}(n, m)$, and H^i its columns. Given $J \subseteq \{1, \ldots, m\}$, we define

$$H_J = (H^j)^{j \in J}.$$

Let us consider a full rank parity check matrix H for C.

Lemma If d(A) + d(C) > n and $I \subseteq J$, then there exists an unique solution for the system

$$H_J \cdot E^T = H \cdot y^T.$$

Recovering e

Let $H \in \mathcal{M}(n, m)$, and H^i its columns. Given $J \subseteq \{1, \ldots, m\}$, we define

$$H_J = (H^j)^{j \in J}.$$

Let us consider a full rank parity check matrix H for C.

Lemma If d(A) + d(C) > n and $I \subseteq J$, then there exists an unique solution for the system

$$H_J \cdot E^T = H \cdot y^T.$$

PECP for Reed-Solomon codes

$$A = RS[n, t+1], \qquad B^{\perp} = RS[n, t+k].$$

$$A = RS[n, t+1], \qquad B^{\perp} = RS[n, t+k].$$

dim(A) > t $A * B \subseteq C^{\perp}$ d(A) + d(C) > n

$$A = RS[n, t+1], \qquad B^{\perp} = RS[n, t+k].$$

dim(A) > t $A * B \subseteq C^{\perp}$ d(A) + d(C) > n

obvious

$$A = RS[n, t+1], \qquad B^{\perp} = RS[n, t+k].$$

dim(A) > t $A * B \subseteq C^{\perp}$ d(A) + d(C) > n

obvious $A * C = B^{\perp}$

$$A = RS[n, t+1], \qquad B^{\perp} = RS[n, t+k].$$

dim(A) > t $A * B \subseteq C^{\perp}$ d(A) + d(C) > n

obvious $A * C = B^{\perp}$ t < d(C)

$$A = RS[n, t+1], \qquad B^{\perp} = RS[n, t+k].$$

 $\begin{array}{ll} \dim(A) > t & \text{obvious} \\ A * B \subseteq C^{\perp} & A * C = B^{\perp} \\ \mathsf{d}(A) + \mathsf{d}(C) > n & t < \mathsf{d}(C) \end{array}$

Proposition

We have that $d(B^{\perp}) > t$ if and only if

$$t \leq \left\lfloor \frac{\mathsf{d}(C) - 1}{2} \right\rfloor$$

Berlekamp Welch algorithm's key equation Given $\Lambda(X) = \prod_{i \in I} (X - x_i)$ and $N(X) := \Lambda(X)f(X)$, it holds

$$\operatorname{ev}_{X}(\Lambda) * y = \operatorname{ev}_{X}(N).$$

We get

- $(N(x_1),...,N(x_n)) \in B^{\perp} = RS[t+k];$
- $(\Lambda(x_1),\ldots,\Lambda(x_n)) \in A(I) = RS[t+1](I);$

Berlekamp Welch algorithm's key equation Given $\Lambda(X) = \prod_{i \in I} (X - x_i)$ and $N(X) := \Lambda(X)f(X)$, it holds

$$\operatorname{ev}_{X}(\Lambda) * y = \operatorname{ev}_{X}(N).$$

We get

•
$$(N(x_1),...,N(x_n)) \in B^{\perp} = RS[t+k];$$

•
$$(\Lambda(x_1), \ldots, \Lambda(x_n)) \in A(I) = RS[t+1](I);$$

•
$$(\Lambda(x_1),\ldots,\Lambda(x_n)) \in \underbrace{\{a \in A \mid \langle a * y, b \rangle = 0 \ \forall b \in B\}}_{M}.$$

Algorithms for Reed Solomon codes

Proposition

We have that $d(B^{\perp}) > t$ if and only if

$$t \leq \Big\lfloor \frac{\mathsf{d}(C)-1}{2} \Big\rfloor.$$

Power Error Correcting Pairs algorithm with power $\ell = 2$

Error Locating Pair

Given A, B, C linear codes of length n, (A, B) is a *t*-error locating pair (ELP) for C if

- $A * B \subseteq C^{\perp}$;
- $\dim(A) > t$;
- d(A) + d(C) > n.

Pellikaan, 1992:

If I is an independent t-set of error positions with respect to B, where (A, B) is a t-error locating pair for C, then the algorithm corrects any word with error supported at I.

Error Locating Pair

Given A, B, C linear codes of length n, (A, B) is a *t*-error locating pair (ELP) for C if

- $A * B \subseteq C^{\perp}$;
- $\dim(A) > t;$
- d(A) + d(C) > n.

Pellikaan, 1992:

If I is an independent t-set of error positions with respect to B, where (A, B) is a t-error locating pair for C, then the algorithm corrects any word with error supported at I.

Before we used "If $A * B \subseteq C^{\perp}$ and $d(B^{\perp}) > t$, then A(I) = M."

Let us define

- $N_1(X) := \Lambda(X)f(X);$
- $N_2(X) := \Lambda(X) f^2(X)$.

Let us define

- $N_1(X) := \Lambda(X)f(X);$
- $N_2(X) := \Lambda(X)f^2(X)$.

Power Decoding algorithm's key equations Given $\Lambda(X) = \prod_{i \in I} (X - x_i)$ as before, then

$$\left\{ egin{aligned} {\mathsf{ev}}_{\mathsf{X}}(\Lambda) * y = {\mathsf{ev}}_{\mathsf{X}}(N_1) \ {\mathsf{ev}}_{\mathsf{X}}(\Lambda) * y^{*2} = {\mathsf{ev}}_{\mathsf{X}}(N_2) \end{aligned}
ight.$$

Hence, if we consider A = RS[n, t + 1], $B^{\perp} = RS[n, t + k]$ as before, we get

• $(N_1(x_1), ..., N_1(x_n)) \in B^{\perp};$

•
$$(N_2(x_1), \ldots, N_2(x_n)) \in B^{\perp} * C;$$

Hence, if we consider A = RS[n, t + 1], $B^{\perp} = RS[n, t + k]$ as before, we get

• $(N_1(x_1), ..., N_1(x_n)) \in B^{\perp};$

•
$$(N_2(x_1), \ldots, N_2(x_n)) \in B^{\perp} * C;$$

• $(\Lambda(x_1),\ldots,\Lambda(x_n)) \in A(I), M_1 \cap M_2.$

where M_1 and M_2 are defined this way

$$\begin{split} M_1 &:= \{ a \in A \mid \langle a * y, b \rangle = 0 \quad \forall b \in B \}, \\ M_2 &:= \{ a \in A \mid \langle a * y^{*2}, v \rangle = 0 \quad \forall v \in (B^{\perp} * C)^{\perp} \}. \end{split}$$

Hence, if we consider A = RS[n, t + 1], $B^{\perp} = RS[n, t + k]$ as before, we get

• $(N_1(x_1), ..., N_1(x_n)) \in B^{\perp};$

•
$$(N_2(x_1), \ldots, N_2(x_n)) \in B^{\perp} * C;$$

• $(\Lambda(x_1),\ldots,\Lambda(x_n)) \in A(I), M_1 \cap M_2.$

where M_1 and M_2 are defined this way

$$\begin{split} M_1 &:= \{ a \in A \mid \langle a * y, b \rangle = 0 \quad \forall b \in B \}, \\ M_2 &:= \{ a \in A \mid \langle a * y^{*2}, v \rangle = 0 \quad \forall v \in (B^{\perp} * C)^{\perp} \}. \end{split}$$

 \longrightarrow we take $M = M_1 \cap M_2$.

Lemma

If $A * B \subseteq C^{\perp}$, then $A(I) \subseteq M = M_1 \cap M_2 \subseteq A$.

PECP algorithm:

- compute $M = M_1 \cap M_2$ (linear system);
- compute J = Z(M);
- solve the syndrom linear system.

This algorithm can be runned on all codes with an ELP.

Lemma

If $A * B \subseteq C^{\perp}$, then $A(I) \subseteq M = M_1 \cap M_2 \subseteq A$.

PECP algorithm:

- compute $M = M_1 \cap M_2$ (linear system);
- compute J = Z(M);
- solve the syndrom linear system.

This algorithm can be runned on all codes with an ELP. Necessary condition to have M = A(I)? Lemma

If $A * B \subseteq C^{\perp}$, then $A(I) \subseteq M = M_1 \cap M_2 \subseteq A$.

PECP algorithm:

- compute $M = M_1 \cap M_2$ (linear system);
- compute J = Z(M);
- solve the syndrom linear system.

This algorithm can be runned on all codes with an ELP. Necessary condition to have M = A(I)?

Since M(I) = A(I), we get the implications:

$$M = A(I) \iff M(I) = M \iff M_I = \{0\}.$$

Given $a \in A$, we have by definition of M_1

$$a \in M_1 \iff \langle a * y, b \rangle = 0 \quad \forall b \in B.$$

If $A * B \subseteq C^{\perp}$, this is equivalent to $a_I \in (e * B)_I^{\perp}$.

Given $a \in A$, we have by definition of M_1

$$a \in M_1 \iff \langle a * y, b \rangle = 0 \quad \forall b \in B.$$

If $A * B \subseteq C^{\perp}$, this is equivalent to $a_I \in (e * B)_I^{\perp}$.

In the same way, given $a \in A$, it holds

$$a \in M_2 \iff a_I \in (e' * (B^{\perp} * C)^{\perp})_I^{\perp}.$$

Lemma

We have
$$(M_1 \cap M_2)_I = (e * B)_I^{\perp} \cap (e' * (B^{\perp} * C)^{\perp})_I^{\perp} \cap A_I$$
.

Remark

Since A = RS[n, t + 1] is MDS, then $A_I = \mathbb{F}_q^t$.

Hence
$$(M_1 \cap M_2)_I = (e * B)_I^\perp \cap (e' * (B^\perp * C)^\perp)_I^\perp$$
.
Remark

Since
$$A = RS[n, t + 1]$$
 is MDS, then $A_I = \mathbb{F}_q^t$.

Hence
$$(M_1 \cap M_2)_I = (e * B)_I^{\perp} \cap (e' * (B^{\perp} * C)^{\perp})_I^{\perp}$$
.

A necessary condition for $(M_1 \cap M_2)_I$ to be the null space is

$$\dim((e * B)_I^{\perp}) + \dim((e' * (B^{\perp} * C)^{\perp})_I^{\perp}) \le t.$$

This inequality implies the following

Necessary condition

$$\dim(B) + \dim((B^{\perp} * C)^{\perp}) \ge t.$$

Decoding radius for Reed-Solomon codes and $\ell=2$ We get, as for the Power Decoding algorithm with power 2,

$$t \leq \frac{2n - 3k + 1}{3}$$

It is possible to write the algorithm for a general power ℓ .

Decoding radius for Reed-Solomon codes and $\ell = 2$ We get, as for the Power Decoding algorithm with power 2,

$$t \leq \frac{2n-3k+1}{3}$$

It is possible to write the algorithm for a general power ℓ .

For **Reed-Solomon codes**, PECP has the same decoding radius as the Power Decoding algorithm, that is $t_{pow} = \frac{2n\ell - k\ell(\ell+1) + \ell(\ell-1)}{2(\ell+1)}$.

 $PECP(\ell)$:

- (*i*) find $M = \bigcap_{i=1}^{\ell} M_i$;
- (*ii*) given J, find c.

The main cost is the one of step (*i*), which reduces to a linear system of $O(n\ell)$ equations in

$$t + 1 = O\left(\frac{2n\ell + \ell(\ell + 1) + 2}{2(\ell + 1)}\right) = O(n)$$

unknowns. Hence we get the cost $O(n^3\ell)$, while the cost of Power Decoding algorithm is $O(n^3\ell^3)$.

PECP for Algebraic Geometry codes

Let χ be a smooth projective curve, $\mathcal{P} = \{P_1, \dots, P_n\} \subseteq \chi$, G a divisor for χ with supp $(G) \cap \mathcal{P} = \emptyset$ and

$$C = C_L(\chi, \mathcal{P}, G).$$

Theorem

There exists a t-error locating pair for C such that the necessary condition gives the correcting radius

$$t \leq \underbrace{rac{2n\ell-\ell(\ell+1)\deg(\mathcal{G})-2\ell}{2(\ell+1)}-g}_{t_{basic},t_{pow}[SW98]}+ rac{g}{\ell+1}.$$

As for Reed-Solomon codes, the PECP algorithm costs $O(n^3 \ell)$, while the Power Decoding algorithm costs $O(n^3 \ell^3)$.

Future tasks:

- study of the failure cases of the Power Decoding algorithm and the PECP algorithm for Reed-Solomon codes;
- examine the possibility to improve PECP algorithm's decoding radius for algebraic-geometry codes;
- is it possible to design a multiplicity version of ECP algorithm?

Thanks for your attention!