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Motivation - ECM algorithm

Algorithm 1 ECM (H. Lenstra 1985)

INPUT : n with at least two different prime factors
OUTPUT : a non-trivial factor of n.

1: B+ B,, m<+ B!

2: while No factor is found do

3: P« (x,y) € Z/nZ x7Z/nZ and an elliptic curve E on Z/nZ
such that and P € E(Z/nZ).

4 Pm <+ [MP = (Xm: Ym: zZm) mod n

5 g < gcd(zm, n)

6: if g ¢ {1,n} then return g

7 end if

8: end while

N)
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Correctness

Let p be an unknown prime factor of n. If ord(P) in E(F,) divides
B!, then
(xg:yB:zg)=(0:1:0)mod p.

In this case p divides gcd(zg, n).

Sufficient condition
#E(F,) is B—smooth i.e. all its prime factors are < B.

Theorem (Hasse)

Let E be an elliptic curve and p be a prime. Then,

p+1-—2,p<#EF,) <p+1+2/p.




Probability of success

o ECM succeeds if #E(F,) is B—smooth.
o #E(F,) ~ p (Hasse)

Theorem (Lenstra)

For p>3,let S, ={s:|s—(p+1)] </p and s is B — smooth}.

Then the probability ECM succeeds is at least @%.

In other words, probability that a particular curve succeeds is
comparable with the probability of finding a B-smooth number in

the interval (p+1—/p,p+1+/p).



Improved ECM algorithm

Algorithm 2 Practical version of ECM

INPUT : n with at least two different prime factors
OUTPUT : a non-trivial factor of n.

1: B+ B,, m<+ Bl

2: while No factor is found do

3: E/Q < an elliptic curve from a family and P € E(Q).

4 Pm <« [MP = (Xm: Ym: Zm) mod n
5: g < gcd(zm, n)

6: if g ¢ {1,n} then return g

7: end if

8: end while

Idea of Montgomery

Question : What if #E(F}) is even for all primes p?
Theorem : If m divides torsion order of E(Q) then m divides #E(F,) for almost all p.




Montgomery heuristic

Definition
Let E be an elliptic curve, £ be a prime and B be a sufficiently

large integer. We define empirical average valuation,

- (valo(#E(Fp))
v(E) = Z:”<B#{pe<13}

Curves with larger average valuation are ECM-friendly.
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How to improve average valuation ?

@ Montgomery (1985), Suyama (1985), Atkin et Morain (1993),
Bernstein et al (2010) : Torsion points over Q
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How to improve average valuation ?

@ Montgomery (1985), Suyama (1985), Atkin et Morain (1993),
Bernstein et al (2010) : Torsion points over Q

@ Brier and Clavier (2010) : Torsion points over Q(/)
V2(#E(Fp)) = 3V2(#E(Fp)|p = 1 mod 4) + 3%(#E(F,) | p = 3 mod 4)

© Barbulescu et al (2012) : Better average valuation without
additional torsion points by reducing the size of a "specific”
Galois group.




Preliminaries

Definition (m-torsion field)

Let E be an elliptic curve on Q, m a positive integer. The
m-torsion field Q(E[m]) is defined as the smallest extension of Q
containing all the m-torsion points.

As E(Q)[m] ~ Z/mZ x Z/mZ, G = Gal(Q(E[m])/Q) is always a
subgroup of Aut(Z/mZ x Z/mZ) = GLo(Z/mZ).

Theorem (Serre)
Let E be an elliptic curve without complex multiplication.
@ For all primes £ outside a finite set depending on E and for all
k > 1, Gal(Q(E[¢1])/Q) = GL2(Z/¢*Z)
@ For all primes £ and k > 1, the index
[GLa(Z/05Z) : Gal(Q(E[¢¥])/Q)] is non-decreasing and
bounded by a constant depending on E and ¢.




How to improve average valuation ?

Theorem (Barbulescu et al. 2012)

Let ¢ be a prime and E; and E; be two elliptic curves. If
Vn € N, Gal(Q(E1[¢"])) ~ Gal(Q(E2[¢"])) then V¢(E1) = v¢(Ez).

Thus in order to change the average valuation,
we must change Gal(Q(E[¢"])) for at least one n.




How to improve average valuation ?

Theorem (Barbulescu et al. 2012)
Let ¢ be a prime and E; and E; be two elliptic curves. If
Vn € N, Gal(Q(E1[¢"])) ~ Gal(Q(E2[¢"])) then V¢(E1) = v¢(Ez).

Thus in order to change the average valuation,
we must change Gal(Q(E[¢"])) for at least one n.

Primes found

Family Torsion | v between 215 222
Suyama Z/6Z | 10/3 | 4069
Suyama - 11 | Z/6Z | 11/3 | 4756 (16% more)

Suyama-11 is implemented in GMP-ECM.




Constructing torsion field - Division polynomials

Definition - Theorem

For an elliptic curve E and a an integer m, we define the
m-division polynomial as

V(g,m)(X) = 11 (X — xp) € Q[X],
(xp,typ)€EE[m]-O

and the exact m-division polynomial as

ViEm (X) = 11 (X —xp) € Q[X].

(xp,%yp)of order m

We have deg(V (g, ) = w where n = m mod 2.

Let E : y? = x3 + ax + b then \II(E3)—X + 2ax? + 4bx — 122

39
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Constructing prime-power torsion field

Given E : y2 = x3 + ax + b and a prime-power £", we construct
Q(E[£"]) recursively :

Constructing Q(E[/])

Q = Q(x1) = Q(x1,x2) = Q(x1,x2,y1) = Q(x1, x2, y1, y2) = Q(E[{])

where the polynomials defining the extensions are;
© (An irreducible factor of) V(g p

@ An irreducible factor of V(g s on Q(x1).

@ fi(y) =y>— (>4 + ax1 + b).

Q f(y)=y*>— (3 + ax + b)

Once we have Q(E[¢"~1]), we construct Q(E[¢"]) by the same
method using W' over Q(E[¢"1]).
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Inverse Galois problem - Main theorem

Definition (Resolvent polynomial)

Let G be a subgroup of S, and F(Xi, ..., Xp) € K[Xi, ..., Xa] such that
= {0 € Sn|F(Xo(1)s -+ Xo(n)) = F(X4, ..., Xn)}. For a polynomial P, we define the
resolvent polynomial

Ro(FP)X) = J[ X=Floq, s b0m));

c€S,/G

where 01, ..., 0, are the roots of P in K

Theorem
Let P, G, F be as above. Then,
Q Rc(F,P)(X) € K[X].

@ If Gal(P) C G then Rg(F,P)(X) has a root in K and if Rg(F,P)(X) has a
simple root in K then Gal(P) C G upto conjugacy.

The theorem over K = Q(ay, ..., a,) = inverse Galois problem.
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The particular case of division polynomials

Split(V(g,m)) € Q(E[m])

Particular case

e m = 2°: Theorem : For a Montgomery curve
(By? = X3 + Ax? + x), Gal(V,) # Z/4Z.
@ m = 3 Theorem : For any curve, if W3 is irreducible and

Gal(Q(E[3]/Q) # GL(Z/3Z) then #Gal(Vs) = 16.

When P = V(g ) of degree n = 427_1, we have

deg(Rg) = [Sn : G] > [Sh : GLo(Z/4Z)] > exponential(¢?)

D—

‘ The division polynomial is not a random polynomial. ‘
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Algorithmic search of infinite families Computer

Modular form

Algorithmic search of infinite families
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Algorithmic search of infinite families Computer algebra approach
Modular forms approach

Computer algebra approach

Idea : Formal construction of torsion field and sufficient condition

that its Galois group is generic.
Sufficient condition : When all the following extensions have

generic degrees.
Ka = Q(a, b)(x1, %2, y1, y2) = Q(a, b)(E[(])
‘P4:y2—(x23+axz+b)
K3 = Q(a, b)(x1, x2, y1)
‘P3:y2—(x13+ax1+b)
Ky = Q(a, b)(x1, x2)
P, = a factor of W of degree ZZT’Z
K1 = Q(a, b)(x1)

— W of degree L5
P1 =V of degree =
Ko = Q(37 b)
Test if the above four polynomials are irreducible. J
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Algorithmic search of infinite families Computer algebra approach
Modular forms approach

Non-generic Galois image

Example :
Let E: y =x3+ax+b be an elliptic curve. Then
W3 = x* 4 2ax? 4+ 4bx — 2%, We consider a partition of 4 of
length 2.
e For [2,2], we write,

1

x* +2ax? + 4bx — = (x2+e2x+e1)(x2—|—f2x—|—f1)

and equate the coefficients on both sides. We get a system of
polynomial equations,

e+h=0 b= —e
efh+e +f=2a i=2a+eh—e
_ = 2 1.2 _
e +ef =4b el (ez +2a*el)+§ =0.
eth = —1/32° @b +4ae® + W 2% — 1662 =0

Thus, if the polynomial 3x% + 12ax* + 16a°x% — 48b? does not

have a root, then the factorization pattern of W3 is not [2,2].
16 /37



Algorithmic search of infinite families Computer algebra approach
Modular forms approach

Algorithm

Algorithm 3 Finding families
INPUT : A prime ¢
OUTPUT : Necessary polynomial conditions in a and b such that
Gal(Q(E[4])) is non-generic for an elliptic curve E over Q(a, b)
. for i€ {1,2,3,4} do
F; + absolute polynomial of K;_1
for r € partitions of deg(P;) do
Sir < System of polynomial equations in a, b and a root
of F; arising from equating coefficients
Cj,r < Triangulation of S; , (Resultant)
> Necessary for factorization pattern of P; to be r.

Bl

- end for

5
6:
7: end for
8
9: return Set of C; ,
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Algorithmic search of infinite families Computer algebra approach
Modular forms approach

A unified presentation

Montgomery (1992) : "The table entries were found in an ad hoc
manner, so | make no claim completeness.”

Kruppa (2007) : "The choice of o = 11, which surprisingly leads
to higher average exponent..”

Barbulescu et al (2012) : ".. suggests that by imposing equations
on the parameters a and d we can improve the torsion properties.”

"..By trying to force one of these three polynomials to split, we
found four families.”
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Algorithmic search of infinite families Computer algebra approach
Modular forms approach

Case | =3

Let E : y2 = x3 + ax + b be a rational elliptic curve with ab # 0. Let W3 be its
3-division polynomial and A its discriminant. Then we have,

Fact. Pattern of W3 Condition(s) index
(1,1,2) C; and a 3-torsion point 24
(1,1,2) Cr )

(1,3) Cy, or [Co and a 3-torsion point] 8
(1,3) Co 4
(2,2) Cs 6

(4) Cy 3

Cy = 27 x12 4 594 ax10 4+ 972 bx® 4 4761 a®x8 + 14256 abx” + ... +
324 ab (587 a® + 3456 b2) x — 5329 20 + 162432 b233 + 1492992 b*
Cyp = x10 — 24px12 4+ 6AXx8 — 3A2

Cy = 3x* + 6ax? + 12bx — a2

C3 = 3x% 4 12ax* + 16a2x2 — 48b?

Cs = x3 —2A i.e. the j of E is a cube.
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Algorithmic search of infinite families Computer algebra approach
Modular forms approach

From conditions to families of curves

RENELS

For every case, we got the equations of type dx € Q such that
C(a, b,x) =0.

From surface to curve

(a, b) ~ (as*, bs®) (Same elliptic curve over Q), So essentially
C(a, b, x) is a plane curve. Replacing a and b by a(j) and b(j) or
by random linear polynomials in t, we obtain a curve

C(a(t), b(t), x). This curve describes infinitely many elliptic curves
having the same Galois image.

Classical results on curves

Let C be a non-singular curve of genus g. Then if,
@ g > 2, C has finitely many points. [Faltings]
@ g =0, if there is a point, there are infinitely many.

@ g =1, if there is a point, C can be put in Weierstrass form with rank r.
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Algorithmic search of infinite families Computer algebra approach
Modular forms approach

From conditions to families of curves : Example

Let E : y?2 = x3 + ax + b be an elliptic curve. We saw that if W3
factors into two quadratic factors then

C = 3x% + 12ax* + 16a°x% — 48b? has a root.

If we put b = 2a, we get C = 3x% + 12ax* + 16a°x% — 1922°.

This curve is of genus 0. We get a parametrization

27t3(19t + 2)3

0= d b(t) = 2a(t).
. (242t% 1 54t + 3)(271t2 + 57t + 3)2 (t) =2a(t)
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Algorithmic search of infinite families Computer algebra approach
Modular forms approach

Computing the generic valuation of a family

Theorem

Let E; : y? = x3 4 a(t)x + b(t) such that
Gal(Q(t)(E¢[€])/Q(t)) € H. If Ity € Q such that
#Gal(Q(Ey [(])/Q) = #H then Gal(Q(t)(E.[/])/Q(t)) =

Proof

Let B¢ : y?2 = x3 + a(t)x + b(t) and p =t — tp.

Vv It:tg
Gal(Q(£) (Be[4)/Q(t)) < Dec(p) S Gal(Q(Ex [4)/Q)

[ ) I

GLo(Z/¢Z) GLy(Z/0Z)

where Dec is defined below.
Let K be a Galois extension of Q(t). Let p € Q(t) and p be an ideal of K above p. We
define Dec(p) = {0 € Gal(K/Q)|o(p) = p}.




Algorithmic search of infinite families

Valuations for ¢ = 3

Computer algebra approach
Modular forms approach

We obtain g = 0 for all the families for ¢ = 3.

Theorem

Let E: y?2 = x3 + ax + b, ab # 0 be a rational elliptic curve. Then
the generic average valuation 3(E) is 87/128 ~ 0.68, except when

one the following cases occurs.

A parametrization

Example (a, b)

Valuation

a, b complicated.

(5805, —285714)

33/16 ~ 2.06

a, b complicated.

(284445, 97999902)

45/32 &~ 1.41

a=3t?, b= —243° +162t" — 9 [36 (3,-11) 2716 ~ 1.69
— — P —
5 — —1920-258803068 | _ —°—5308416 0460646738176 | (54504160, — “090552046593 ) | 27 16 ~ 1.69
_ 36t(t+2)° 5 _ —4608 —0216 39/3y —
= a0 =23 (oo™ 165 ) fo2 =122
_ 27t3(19t+2)° _ 250047 500094 69 /pa A
3 = mersar) TSty b = 22 (33758730 32758730) /o4 ~ 1.08

a=%,b=23

=)

69/128 ~ 0.54

23 /37



Algorithmic search of infinite families Computer algebra approach
Modular forms approach

Cryptographic application

Popular parametrizations

° Montgomery Bzy =x3+ Ax?® + x or

2A3—3A
y2 =+ 332 X+ “57E3

o Edwards ax? +y =1+ dx2y or y — & ¢ 352 X+ 2%7?35%

_ at+d 4
where o = —22+% and 8 = =5.

@ Hessian y? + axy 4+ by = x3 or
y? = x3 4+ (—27a* + 648ab)x + (54a° — 19442%b + 11664b2).

@ INPUT : A number field K, a prime ¢ and a(a, ) and
@ OUTPUT : Complete list of equations of negligible density
necessary for non-generic valuation v(E, ).
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Algorithmic search of infinite families Computer algebra approach
Modular forms approach

Valuation m = 4, Montgomery curve

Let E : By? = x3 + Ax? + x be a rational elliptic curve with B(A? — 4) # 0. Then the
generic average valuation ¥ (E) is 10/3 & 3.33, except,

@ If A2 —4#0ie E(Q)2] # Z/2Z x Z/2Z, we note W be the quartic factor of
its 4-division polynomial. Then we have,

Fact. Pat. of W Condition(s) Index | Valuation
_

(2,2) A= —2;4+23 24 | 10/3~3.33

(4) AL2 —f0or BB =—t* | 12 | Uam3.67

® If A2 —4=ie if A= 234 Then we have,

Fact. Pat. of ¥ Condition(s) Index | Valuation
(1,1,2) A= % and B= —t(t2+4)0 | 48 | 145~a67

_ 424t 116 ~
(1,1,2) A= S 24 | /5~ 3.83
(2,2) A=EH ang A2 _ 24 | 133~4.33
(2,2) A=t 12 | 153~3.67
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Algorithmic search of infinite families Computer algebra approach
Modular forms approach

Modular forms approach

Theorem (Sutherland, Zywina)

Let E be an elliptic curve and H C GLy(Z/¢"Z) such that
—1 € H. Then there exists a polynomial Xy (J, t) such that
Gal(Q(E[¢"])/Q) C H if and only if Ity € Q such that
XH(j(E), to) =0.

Fast computations of Xy

[1] Jeremy Rouse and David Zureick-Brown, "Elliptic curves over Q and 2-adic images
of Galois” (2015)

@ Complete description of possible 2-adic Galois images.

[2] Andrew Sutherland and David Zywina, "Modular curves of prime-power level with
infinitely many rational points” (2017)

@ Complete description of possible ¢-adic Galois images contained in subgroups
containing —1.
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Algorithmic search of infinite families

Computer algebra approach

Modular forms approach

Curve J(E) | #Gal(Q(E[3])/Q) | ws
y? =x>—336x +448 | 1792 12 /3
y? =x3 =77 -336x + I° - 448 | 1792 6 /32

The modular forms approach does not work for arbitrary H. ‘
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Algorithmic search of infinite families Computer algebra approach

Modular forms approach

Curve J(E) | #Gal(Q(E[3])/Q) | ¥
y? =x>—336x +448 | 1792 12 /3
y2=x3—77.336x + 7° - 448 | 1792 6 54/32

The modular forms approach does not work for arbitrary H. ‘

Let H be a subgroup of GL2(Z/¢"Z).

~1¢H -leH
I=2] [1] [1], [2]
|42 2]

Our contribution

Complete list of elliptic curves having non-generic Galois image not
containing —1.
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Algorithmic search of infinite families Computer algebra approach

Modular forms approach

Let H be subgroup of GLa(Z/¢"Z) containing —1 and let H be
subgroup of H such that H = (H, —1).

Q()(E[)

N

il L=Qt)(VF)
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Defining «

Cryptographic applications Complete list

Cryptographic applications
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Defining «
Cryptographic applications Complete list

A criterion to choose curves

Notation : s~ tif t —/t <s < t+Vt.

p is fixed and E varies (H. Lenstra)

Prob(#E(F,) is B-smooth) = Prob(a random integer ~ p is B-smooth).

_1
O(log p)
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A criterion to choose curves

Notation : s~ tif t —/t <s < t+Vt.

p is fixed and E varies (H. Lenstra)

Prob(#E(F,) is B-smooth) = Prob(a random integer ~ p is B-smooth).

_1
O(log p)

E fixed and p varies in [n —\/n, n + \/n]

Can we claim the following ?

Prob(#E(F,) is B-smooth) = Prob(a random integer ~ ne® is B-smooth).
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A criterion to choose curves

Notation : s~ tif t —/t <s < t+Vt.

p is fixed and E varies (H. Lenstra)

Prob(#E(F,) is B-smooth) = Prob(a random integer ~ p is B-smooth).

_1
O(log p)

E fixed and p varies in [n —\/n, n + \/n]

Can we claim the following ?

Prob(#E(F,) is B-smooth) = Prob(a random integer ~ ne® is B-smooth).

| A\

Definition
For E an elliptic curve and n, B two integers, a(E, n, B) € R is such that

#{p ~ n| #E(Fp) is B-smooth}  #{x ~ ne®(B:0B) | x js B-smooth}
#{plp~ n} #{x|x ~ nex(En.B)} :

A,
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Cryptographic applications Complete list

Let E: y?> = x3 +3x + 5 and n = 2%°. We compute « for usual
values of B.

a(E, n,30) | —0.79
a(E, n,60) | —0.83
(E, n,90) | —0.82
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Let E: y?> = x3 +3x + 5 and n = 2%°. We compute « for usual
values of B.

a(E, n,30) | —0.79
a(E, n,60) | —0.83
(E, n,90) | —0.82

Theorem (Barbulescu and Lachand (2016))

Let f be a quadratic homogeneous polynomial with certain
properties.

Prob(f(n), n ~ N is B-smooth) = Prob(n of size Ne®(") is B-smooth).

Question : Can we make « independent of n and B?
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Defining «
Cryptographic applications Complete list

Definition

Let n and B’ be integers. We define B’ sifted part of n,
n

HPSB/ pVP(") :

In order to render « independent of n and B, we let n,B — oo and replace
proportions by the density of Chebotarev. Let B’ < B.

Cgpr(n) =

Montgomery heuristic

If Cg/(x) and Cg/(#E(Fp)) are of the same size then x and #E(F,) have the same
chances of being B-smooth.

Thus when B’ and x — oo, we expect,

o+ log(n) — Z v¢(x) log(¢) = log(n) — Z v (E) log(?).

4 4

This prompts us to define the following.
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Defining «
Cryptographic applications Complete list

Formal definition of o(E)

Assuming the convergence for now,

Definition

Let E be an elliptic curve and £ a prime. Let
a(E) = (A5 — %(E)) log £. We define,

a(E) = Z ay(E).
¢
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Defining «
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Existence and computation of a(E)

Calculations of ¥;(E) can be done explicitly using the image of £"-torsion field.

Generic case

Let Eg be such that for all primes ¢ and for all kK > 1, we have
Gal(Q(E[¢])/Q) = GL2(Z/€%Z). In this case, we get ve(Eg) = ¢

B+ —20-1)¢
~—————»———— and
(e+1)2(e—1)

numerically o(Eg) ~ —0.811997734.
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Existence and computation of a(E)

Calculations of ¥;(E) can be done explicitly using the image of £"-torsion field.

Generic case

Let Eg be such that for all primes ¢ and for all kK > 1, we have
Gal(Q(Eg[¢X])/Q) = GL2(Z/£KZ). In this case, we get Vp(Eg) =
numerically o(Eg) ~ —0.811997734.

(+2—20-1)¢

e and

Non-generic cases

According to a theorem of Serre, for every elliptic curve without complex
multiplication, there are only finitely many primes £ for which Gal(Q(E[¢/])/Q) can be
different than GLy(Z/¢XZ). Thus in this case, o differs by only finitely many terms in
its defining series.
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Existence and computation of a(E)

Calculations of ¥;(E) can be done explicitly using the image of £"-torsion field.

Generic case

Let Eg be such that for all primes ¢ and for all kK > 1, we have
Gal(Q(Eg[¢X])/Q) = GL2(Z/£KZ). In this case, we get Vp(Eg) =
numerically o(Eg) ~ —0.811997734.

(+2—20-1)¢

e and

Non-generic cases

According to a theorem of Serre, for every elliptic curve without complex
multiplication, there are only finitely many primes £ for which Gal(Q(E[¢/])/Q) can be
different than GLy(Z/¢XZ). Thus in this case, o differs by only finitely many terms in
its defining series.

Remark

Serre also conjectured that for every prime £ > 37, Gal(Q(E[¢/])/Q) = GLy(Z/£¥Z).
This enables us to compute « for any given curve effectively assuming the conjecture.
Andrew Sutherland has verified this conjecture with the curves in Cremona database.
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Cryptographic applications Complete list

o : An efficient tool

@ Curves with torsion Z/2Z x Z/8Z : For these curves v, changes from %4 to %.
Thus,
Qz/22%7,/8% = Ogeneric + (14/9 —16/3) log(2) ~ —3.4355.
© Suyama-11 family : For these curves, V> changes from % to % and v3 changes

87 27
from 135 0 T5- Thus,

OtSyyama—11 = Otgeneric+(14/9—11/3) log(2)+(87,/128—27/16) log(3) ~ —3.3825.
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- An efficient tool

@ Curves with torsion Z/2Z x Z/8Z : For these curves v, changes from %4 to %.
Thus,
Qg /27,x7,)87 = Qgeneric + (14/9 — 16/3) log(2) ~ —3.4355.

© Suyama-11 family : For these curves, V> changes from % to % and v3 changes

87 27
from 135 0 T5- Thus,

OtSyyama—11 = Otgeneric+(14/9—11/3) log(2)+(87,/128—27/16) log(3) ~ —3.3825.

Numerical experiments with a. (n = 2%°)

@ Curves with torsion Z/27Z x Z,/8Z.

n ne® #E(F;) errory eTToT pect
B: =30 0.000518 | 0.005753 | 0.005126 889 % 10.89 %
B, =100 | 0.008892 | 0.03883 | 0.042573 | 378.8 % | 9.63 %

@ Suyama-11

n ne® #E(F,) €ITOr, | Errorpec
B; =30 | 0.000518 | 0.005133 | 0.005743 | 1008 % | 11.89 %
B> =100 | 0.008892 0.04013 0.04101 361%, 2.19%
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Some other families

J(t) (Ej(1))
(t°49t°4+27t3+3)3(+3+3)° 15873
8(1‘6—}6—91‘3—|—f7)t3 . T
256(t°+8t°+20t"+16t°+1)
(t28+4)(ti+2)2§2 -2.2176
s -2.3908
—16(t°—16t%416)3
(t8_1)t32 ‘24486
(t19—8¢1*+12¢124.8¢104 2305485 +12¢%—8t°+1)3
(t*—6t2+1)2(t2+1)*(¢t2—-1)8¢8 -2.6219
(t1°—8¢1*+12¢124-8¢10423054-8t°+12¢%—8t°+1)3
(t4—6t2+1)2(t2+1)4(t2—1)8f8 _34355
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Conclusion and open questions

There are only finitely many values of «(E). And the best among
them is approximately -3.43.

37/37



Defining o
Cryptographic applications Complete list

Conclusion and open questions

There are only finitely many values of «(E). And the best among
them is approximately -3.43.

Open questions

@ Proving theoretically that o works.

37/37



Defining o
Cryptographic applications Complete list

Conclusion and open questions

There are only finitely many values of «(E). And the best among
them is approximately -3.43.

Open questions

@ Proving theoretically that o works.

@ There are curves where 2-Galois and 3-Galois are generic
however 6-Galois is not. To what extent can these curves be
used for ECM ?

37 /37



Defining o
Cryptographic applications Complete list

Conclusion and open questions

There are only finitely many values of «(E). And the best among
them is approximately -3.43.

Open questions

@ Proving theoretically that o works.

@ There are curves where 2-Galois and 3-Galois are generic
however 6-Galois is not. To what extent can these curves be
used for ECM ?

@ Generalising the above work over number fields. In the NFS

algorithm for discrete logarithms, one can have to factor many
integers of the form a* + b*. In this case, we search families

over Q((g).

37 /37



Defining o
Cryptographic applications Complete list

Conclusion and open questions

There are only finitely many values of «(E). And the best among
them is approximately -3.43.

Open questions

@ Proving theoretically that o works.

@ There are curves where 2-Galois and 3-Galois are generic
however 6-Galois is not. To what extent can these curves be
used for ECM ?

@ Generalising the above work over number fields. In the NFS

algorithm for discrete logarithms, one can have to factor many
integers of the form a* + b*. In this case, we search families

over Q((g).

Thank you'!
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