Finding ECM friendly curves: A Galois approach

Sudarshan SHINDE

Institut de Mathématiques de Jussieu - Paris Rive Gauche

Motivation - ECM algorithm

Algorithm 1 ECM (H. Lenstra 1985)

INPUT : *n* with at least two different prime factors **OUTPUT** : a non-trivial factor of *n*.

1:
$$\mathbf{B} \leftarrow \mathbf{B}_n, \ m \leftarrow \mathbf{B}!$$

- 2: while No factor is found do
- 3: $P \leftarrow (x, y) \in \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ and an elliptic curve E on $\mathbb{Z}/n\mathbb{Z}$ such that and $P \in E(\mathbb{Z}/n\mathbb{Z})$.

4:
$$P_m \leftarrow [m]P = (x_m : y_m : z_m) \mod n$$

5:
$$g \leftarrow \gcd(z_m, n)$$

6: **if**
$$g \notin \{1, n\}$$
 then return g

7: end if

8: end while

Correctness

Idea

Let p be an unknown prime factor of n. If ord(P) in $E(\mathbb{F}_p)$ divides B!, then

$$(x_{\mathrm{B}}:y_{\mathrm{B}}:z_{\mathrm{B}})\equiv(0:1:0)\,\mathrm{mod}\,\,p.$$

In this case p divides $gcd(z_B, n)$.

Sufficient condition

 $\#E(\mathbb{F}_p)$ is B-smooth i.e. all its prime factors are < B.

Theorem (Hasse)

Let E be an elliptic curve and p be a prime. Then,

$$p+1-2\sqrt{p} \leq \# \mathrm{E}(\mathbb{F}_p) \leq p+1+2\sqrt{p}.$$

< ロ > < 同 > < 回 > < 回 >

Probability of success

- ECM succeeds if $\#E(\mathbb{F}_p)$ is B-smooth.
- $\#E(\mathbb{F}_p) \approx p$ (Hasse)

Theorem (Lenstra)

For p > 3, let $S_p = \{s : |s - (p+1)| \le \sqrt{p} \text{ and } s \text{ is } B - \text{smooth}\}$. Then the probability ECM succeeds is at least $\frac{c}{\log(p)} \frac{\#S-2}{2\sqrt{p+1}}$.

In other words, probability that a particular curve succeeds is comparable with the probability of finding a B-smooth number in the interval $(p + 1 - \sqrt{p}, p + 1 + \sqrt{p})$.

Improved ECM algorithm

Algorithm 2 Practical version of ECM

INPUT : *n* with at least two different prime factors **OUTPUT** : a non-trivial factor of *n*.

- 1: $\mathbf{B} \leftarrow \mathbf{B}_n, \ m \leftarrow \mathbf{B}!$
- 2: while No factor is found do
- 3: $E/\mathbb{Q} \leftarrow$ an elliptic curve from a family and $P \in E(\mathbb{Q})$.
- 4: $P_m \leftarrow [m]P = (x_m : y_m : z_m) \mod n$

5:
$$g \leftarrow \gcd(z_m, n)$$

6: **if**
$$g \notin \{1, n\}$$
 then return g

- 7: end if
- 8: end while

Idea of Montgomery

Question : What if $\#E(\mathbb{F}_p)$ is even for all primes p? Theorem : If *m* divides torsion order of $E(\mathbb{Q})$ then *m* divides $\#E(\mathbb{F}_p)$ for almost all *p*.

5 / 37

Montgomery heuristic

Definition

Let E be an elliptic curve, ℓ be a prime and B be a sufficiently large integer. We define empirical average valuation, $\bar{v_{\ell}}(E) = \frac{\sum_{p < B} (\text{val}_{\ell} (\#E(\mathbb{F}_p)))}{\#\{p < B\}}$

Heuristic

Curves with larger average valuation are ECM-friendly.

Algorithmic search of infinite families Cryptographic applications

How to improve average valuation?

Some ways

 Montgomery (1985), Suyama (1985), Atkin et Morain (1993), Bernstein et al (2010) : Torsion points over Q Algorithmic search of infinite families Cryptographic applications

How to improve average valuation?

Some ways

- Montgomery (1985), Suyama (1985), Atkin et Morain (1993), Bernstein et al (2010) : Torsion points over Q
- **2** Brier and Clavier (2010) : Torsion points over $\mathbb{Q}(i)$ $\overline{v}_2(\#E(\mathbb{F}_p)) = \frac{1}{2}\overline{v}_2(\#E(\mathbb{F}_p)|p \equiv 1 \mod 4) + \frac{1}{2}\overline{v}_2(\#E(\mathbb{F}_p)|p \equiv 3 \mod 4)$

How to improve average valuation?

Some ways

- Montgomery (1985), Suyama (1985), Atkin et Morain (1993), Bernstein et al (2010) : Torsion points over Q
- **2** Brier and Clavier (2010) : Torsion points over $\mathbb{Q}(i)$ $\overline{v}_2(\#E(\mathbb{F}_p)) = \frac{1}{2}\overline{v}_2(\#E(\mathbb{F}_p)|p \equiv 1 \mod 4) + \frac{1}{2}\overline{v}_2(\#E(\mathbb{F}_p)|p \equiv 3 \mod 4)$
- Barbulescu et al (2012) : Better average valuation without additional torsion points by reducing the size of a "specific" Galois group.

Preliminaries

Definition (*m*-torsion field)

Let E be an elliptic curve on \mathbb{Q} , *m* a positive integer. The *m*-torsion field $\mathbb{Q}(\mathbb{E}[m])$ is defined as the smallest extension of \mathbb{Q} containing all the *m*-torsion points.

As $\mathrm{E}(\bar{\mathbb{Q}})[m] \simeq \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$, $\mathrm{G} = \mathrm{Gal}(\mathbb{Q}(\mathrm{E}[m])/\mathbb{Q})$ is always a subgroup of $\mathrm{Aut}(\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}) = \mathrm{GL}_2(\mathbb{Z}/m\mathbb{Z})$.

Theorem (Serre)

Let ${\rm E}$ be an elliptic curve without complex multiplication.

- For all primes ℓ outside a finite set depending on E and for all $k \ge 1$, $\operatorname{Gal}(\mathbb{Q}(\operatorname{E}[\ell^k])/\mathbb{Q}) = \operatorname{GL}_2(\mathbb{Z}/\ell^k\mathbb{Z})$
- For all primes ℓ and k ≥ 1, the index
 [GL₂(ℤ/ℓ^kℤ) : Gal(ℚ(E[ℓ^k])/ℚ)] is non-decreasing and
 bounded by a constant depending on E and ℓ.

8 / 37

How to improve average valuation?

Theorem (Barbulescu et al. 2012)

Let ℓ be a prime and E_1 and E_2 be two elliptic curves. If $\forall n \in \mathbb{N}, \operatorname{Gal}(\mathbb{Q}(E_1[\ell^n])) \simeq \operatorname{Gal}(\mathbb{Q}(E_2[\ell^n]))$ then $\overline{v}_{\ell}(E_1) = \overline{v}_{\ell}(E_2)$.

Thus in order to change the average valuation, we must change $Gal(\mathbb{Q}(E[\ell^n]))$ for at least one *n*.

How to improve average valuation?

Theorem (Barbulescu et al. 2012)

Let ℓ be a prime and E_1 and E_2 be two elliptic curves. If $\forall n \in \mathbb{N}, \operatorname{Gal}(\mathbb{Q}(E_1[\ell^n])) \simeq \operatorname{Gal}(\mathbb{Q}(E_2[\ell^n]))$ then $\overline{\nu}_{\ell}(E_1) = \overline{\nu}_{\ell}(E_2)$.

Thus in order to change the average valuation, we must change $Gal(\mathbb{Q}(E[\ell^n]))$ for at least one *n*.

Exemple

Family	Torsion	<i>v</i> ₂	Primes found between 2 ¹⁵ , 2 ²²
Suyama	$\mathbb{Z}/6\mathbb{Z}$	10/3	4069
Suyama - 11	$\mathbb{Z}/6\mathbb{Z}$	11/3	4756 (16% more)

Suyama-11 is implemented in GMP-ECM.

Constructing torsion field - Division polynomials

Definition - Theorem

For an elliptic curve ${\rm E}$ and a an integer m, we define the $\textit{m}\text{-}{\rm division}$ polynomial as

$$\Psi_{(\mathrm{E},m)}(X) = \prod_{(x_{\mathrm{P}},\pm y_{\mathrm{P}})\in \mathrm{E}[m]-O} (X-x_{\mathrm{P}}) \qquad \in \mathbb{Q}[X],$$

and the exact *m*-division polynomial as

$$\Psi_{(\mathrm{E},m)}^{\mathrm{exact}}(X) = \prod_{(x_{\mathrm{P}},\pm y_{\mathrm{P}}) \mathrm{of \ order} \ m} (X - x_{\mathrm{P}}) \qquad \in \mathbb{Q}[X].$$

We have
$$\deg(\Psi_{(\mathrm{E},m)}) = \frac{m^2+2-3\eta}{2}$$
 where $\eta = m \mod 2$.

Example

Let
$$E: y^2 = x^3 + ax + b$$
 then $\Psi_{(E,3)} = x^4 + 2ax^2 + 4bx - \frac{1}{3}a^2$

10/37

Constructing prime-power torsion field

Given $E: y^2 = x^3 + ax + b$ and a prime-power ℓ^n , we construct $\mathbb{Q}(E[\ell^n])$ recursively :

Constructing $\mathbb{Q}(E[\ell])$

 $\mathbb{Q} \hookrightarrow \mathbb{Q}(x_1) \hookrightarrow \mathbb{Q}(x_1, x_2) \hookrightarrow \mathbb{Q}(x_1, x_2, y_1) \hookrightarrow \mathbb{Q}(x_1, x_2, y_1, y_2) = \mathbb{Q}(\mathrm{E}[\ell])$

where the polynomials defining the extensions are;

- (An irreducible factor of) $\Psi_{(E,\ell)}$
- **2** An irreducible factor of $\Psi_{(E,\ell)}$ on $\mathbb{Q}(x_1)$.

3
$$f_1(y) = y^2 - (x_1^3 + ax_1 + b)$$
.

•
$$f_2(y) = y^2 - (x_2^3 + ax_2 + b)$$

Once we have $\mathbb{Q}(\mathrm{E}[\ell^{n-1}])$, we construct $\mathbb{Q}(\mathrm{E}[\ell^n])$ by the same method using $\Psi_{(\mathrm{E},\ell^n)}^{\mathrm{exact}}$ over $\mathbb{Q}(\mathrm{E}[\ell^{n-1}])$.

Inverse Galois problem - Main theorem

Definition (Resolvent polynomial)

Let G be a subgroup of S_n and $F(X_1, ..., X_n) \in K[X_1, ..., X_n]$ such that $G = \{\sigma \in S_n | F(X_{\sigma(1)}, ..., X_{\sigma(n)}) = F(X_1, ..., X_n)\}$. For a polynomial P, we define the resolvent polynomial

$$\mathrm{R}_{\mathrm{G}}(\mathrm{F},\mathrm{P})(X) = \prod_{\sigma \in \mathcal{S}_n/\mathrm{G}} (X - \mathrm{F}(\theta_{\sigma(1)},...,\theta_{\sigma(n)})),$$

where $\theta_1, ..., \theta_n$ are the roots of P in $\bar{\mathrm{K}}$

Theorem

Let $\mathrm{P},\mathrm{G},\mathrm{F}$ be as above. Then,

- ② If Gal(P) ⊂ G then $R_G(F, P)(X)$ has a root in K and if $R_G(F, P)(X)$ has a simple root in K then Gal(P) ⊂ G upto conjugacy.

The theorem over $K = \mathbb{Q}(a_1, \ldots, a_n) \Rightarrow$ inverse Galois problem.

4 D N 4 B N 4 B N 4 B N

The particular case of division polynomials

$$\mathsf{Split}(\Psi_{(\mathrm{E},m)}) \subset \mathbb{Q}(\mathrm{E}[m])$$

Particular case

•
$$m = 2^2$$
: **Theorem :** For a Montgomery curve $(By^2 = X^3 + Ax^2 + x)$, $Gal(\Psi_4) \neq \mathbb{Z}/4\mathbb{Z}$.

• m = 3 Theorem : For any curve, if Ψ_3 is irreducible and $\operatorname{Gal}(\mathbb{Q}(\mathbb{E}[3]/\mathbb{Q}) \neq \operatorname{GL}_2(\mathbb{Z}/3\mathbb{Z})$ then $\#\operatorname{Gal}(\Psi_3) = 16$.

Remark

When
$$P = \Psi_{(E,\ell)}$$
 of degree $n = \frac{\ell^2 - 1}{2}$, we have $\deg(R_G) = [S_n : G] > [S_n : GL_2(\mathbb{Z}/\ell\mathbb{Z})] > exponential(\ell^2)$

The division polynomial is not a random polynomial.

Algorithmic search of infinite families

Computer algebra approach

Idea : Formal construction of torsion field and sufficient condition that its Galois group is generic.

Sufficient condition : When all the following extensions have generic degrees.

$$\begin{split} \mathrm{K}_{4} &= \mathbb{Q}(a,b)(x_{1},x_{2},y_{1},y_{2}) = \mathbb{Q}(a,b)(\mathrm{E}[\ell]) \\ & \left| \begin{array}{c} \mathrm{P}_{4} = y^{2} - (x_{2}^{3} + ax_{2} + b) \\ \mathrm{K}_{3} &= \mathbb{Q}(a,b)(x_{1},x_{2},y_{1}) \\ & \left| \begin{array}{c} \mathrm{P}_{3} = y^{2} - (x_{1}^{3} + ax_{1} + b) \\ \mathrm{K}_{2} &= \mathbb{Q}(a,b)(x_{1},x_{2}) \\ & \left| \begin{array}{c} \mathrm{P}_{2} = a \text{ factor of } \Psi \text{ of degree } \frac{\ell^{2} - \ell}{2} \\ \mathrm{K}_{1} &= \mathbb{Q}(a,b)(x_{1}) \\ & \left| \begin{array}{c} \mathrm{P}_{1} = \Psi \text{ of degree } \frac{\ell^{2} - 1}{2} \\ \mathrm{K}_{0} &= \mathbb{Q}(a,b) \end{split} \right. \end{split}$$

Test if the above four polynomials are irreducible.

Non-generic Galois image

Example : Let $E: y^2 = x^3 + ax + b$ be an elliptic curve. Then $\Psi_3 = x^4 + 2ax^2 + 4bx - \frac{1}{3}a^2$. We consider a partition of 4 of length 2.

• For [2, 2], we write,

$$x^{4} + 2ax^{2} + 4bx - \frac{1}{3}a^{2} = (x^{2} + e_{2}x + e_{1})(x^{2} + f_{2}x + f_{1})$$

and equate the coefficients on both sides. We get a system of polynomial equations,

$$\begin{cases} e_2 + f_2 = 0\\ e_2 f_2 + e_1 + f_1 = 2a\\ e_1 f_2 + e_2 f_1 = 4b\\ e_1 f_1 = -1/3 a^2 \end{cases} \Rightarrow \begin{cases} f_2 = -e_2\\ f_1 = 2a + e_2 f_2 - e_1\\ e_1 \left(e_2^2 + 2a - e_1\right) + \frac{1}{3} a^2 = 0.\\ e_2^6 + 4ae_2^4 + \frac{16}{3}e_2^2 a^2 - 16b^2 = 0 \end{cases}$$

Thus, if the polynomial $3x^6 + 12ax^4 + 16a^2x^2 - 48b^2$ does not have a root, then the factorization pattern of Ψ_3 is not $[2, 2]_{\pm}$.

Algorithm

Algorithm 3 Finding families **INPUT :** A prime ℓ

OUTPUT : Necessary polynomial conditions in *a* and *b* such that $Gal(\mathbb{Q}(E[\ell]))$ is non-generic for an elliptic curve E over $\mathbb{Q}(a, b)$

- 1: for $i\in\{1,2,3,4\}$ do
- 2: $F_i \leftarrow \text{absolute polynomial of } K_{i-1}$
- 3: for $r \in \text{partitions of deg}(\mathbf{P}_i)$ do
- 4: $S_{i,r} \leftarrow$ System of polynomial equations in *a*, *b* and a root of F_i arising from equating coefficients
- 5: $C_{i,r} \leftarrow \text{Triangulation of } S_{i,r}$ (Resultant)
- 6: \triangleright Necessary for factorization pattern of P_i to be r.
- 7: end for
- 8: end for
- 9: return Set of $C_{i,r}$

A unified presentation

Montgomery (1992) : "The table entries were found in an ad hoc manner, so I make no claim completeness."

Kruppa (2007) : "The choice of $\sigma = 11$, which surprisingly leads to higher average exponent.."

Barbulescu et al (2012) : ".. suggests that by imposing equations on the parameters a and d we can improve the torsion properties."

"...By trying to force one of these three polynomials to split, we found four families."

Case I = 3

Theorem

Let $E: y^2 = x^3 + ax + b$ be a rational elliptic curve with $ab \neq 0$. Let Ψ_3 be its 3-division polynomial and Δ its discriminant. Then we have,

Fact. Pattern of Ψ_3	Condition(s)	index
(1, 1, 2)	C_1 and a 3-torsion point	24
(1, 1, 2)	C_1	12
(1,3)	$C_{2\prime}$ or $[C_2$ and a 3-torsion point]	8
(1,3)	C ₂	4
(2, 2)	C ₃	6
(4)	C_4	3

$$\begin{split} &\mathrm{C_1}=27\,x^{12}+594\,ax^{10}+972\,bx^9+4761\,a^2x^8+14256\,abx^7+...+\\ &324\,ab\,\left(587\,a^3+3456\,b^2\right)x-5329\,a^6+162432\,b^2a^3+1492992\,b^4\\ &\mathrm{C_{2\prime}}=x^{16}-24bx^{12}+6\Delta x^8-3\Delta^2\\ &\mathrm{C_2}=3x^4+6ax^2+12bx-a^2\\ &\mathrm{C_3}=3x^6+12ax^4+16a^2x^2-48b^2\\ &\mathrm{C_4}=x^3-2\Delta \text{ i.e. the }j \text{ of }\mathrm{E} \text{ is a cube.} \end{split}$$

イロト 不得 トイヨト イヨト

From conditions to families of curves

Remark

For every case, we got the equations of type $\exists x \in \mathbb{Q}$ such that C(a, b, x) = 0.

From surface to curve

 $(a, b) \sim (as^4, bs^6)$ (Same elliptic curve over \mathbb{Q}), So essentially C(a, b, x) is a plane curve. Replacing *a* and *b* by a(j) and b(j) or by random linear polynomials in *t*, we obtain a curve C(a(t), b(t), x). This curve describes infinitely many elliptic curves having the same Galois image.

Classical results on curves

Let ${\rm C}$ be a non-singular curve of genus g. Then if,

- $g \ge 2$, C has finitely many points. [Faltings]
- g = 0, if there is a point, there are infinitely many.
- g = 1, if there is a point, C can be put in Weierstrass form with rank r.

From conditions to families of curves : Example

Let $E: y^2 = x^3 + ax + b$ be an elliptic curve. We saw that if Ψ_3 factors into two quadratic factors then $C = 3x^6 + 12ax^4 + 16a^2x^2 - 48b^2$ has a root.

If we put b = 2a, we get $C = 3x^6 + 12ax^4 + 16a^2x^2 - 192a^2$.

This curve is of genus 0. We get a parametrization

$$a(t) = rac{27t^3(19t+2)^3}{(242t^2+54t+3)(271t^2+57t+3)^2} ext{ and } b(t) = 2a(t).$$

Computing the generic valuation of a family

Theorem

Let
$$E_t : y^2 = x^3 + a(t)x + b(t)$$
 such that
 $Gal(\mathbb{Q}(t)(E_t[\ell])/\mathbb{Q}(t)) \subseteq H$. If $\exists t_0 \in \mathbb{Q}$ such that
 $\#Gal(\mathbb{Q}(E_{t_0}[\ell])/\mathbb{Q}) = \#H$ then $Gal(\mathbb{Q}(t)(E_t[\ell])/\mathbb{Q}(t)) = H$.

Proof

Let
$$E_t : y^2 = x^3 + a(t)x + b(t)$$
 and $p = t - t_0$.

where Dec is defined below.

Let K be a Galois extension of $\mathbb{Q}(t)$. Let $p \in \mathbb{Q}(t)$ and \mathfrak{p} be an ideal of K above p. We define $\mathrm{Dec}(\mathfrak{p}) = \{\sigma \in \mathrm{Gal}(\mathrm{K}/\mathbb{Q}) | \sigma(\mathfrak{p}) = \mathfrak{p}\}.$

Valuations for $\ell = 3$

We obtain g = 0 for all the families for $\ell = 3$.

Theorem

Let $E: y^2 = x^3 + ax + b$, $ab \neq 0$ be a rational elliptic curve. Then the generic average valuation $\bar{\nu}_3(E)$ is ${}^{87}/_{128} \approx 0.68$, except when one the following cases occurs.

A parametrization	Example (a, b)	Valuation
a, b complicated.	(5805, -285714)	$^{33}/_{16} \approx 2.06$
a, b complicated.	(284445,97999902)	$^{45}/_{32} \approx 1.41$
$a = 3t^2, b = -243t^6 + 162t^4 - 9t^2/36$	(3, -11)	$^{27}/_{16} pprox 1.69$
$a = \frac{-192 t^3 - 254803968}{t^4}, b = \frac{-t^6 - 5308416 t^3 - 4696546738176}{3t^6}$	$(-254804160, -\frac{4696552046593}{3})$	$^{27}/_{16} \approx 1.69$
$a = rac{-36t(t+2)^3}{(t^2+4t+1)^2}, b = 2a$	$\left(\frac{-4608}{169}, \frac{-9216}{169}\right)$	$^{39}/_{32} = 1.22$
$a = \frac{27t^3(19t+2)^3}{(242t^2+54t+3)(271t^2+57t+3)^2}, b = 2a$	$\left(\frac{250047}{32758739}, \frac{500094}{32758739}\right)$	$^{69}/_{64} pprox 1.08$
$a = \frac{216}{(t^3 - 8)}, b = 2a$	$(\frac{-216}{7}, \frac{-432}{7})$	$^{69/128} \approx 0.54$

Cryptographic application

Popular parametrizations

• Montgomery
$$By^2 = x^3 + Ax^2 + x$$
 or
 $y^2 = x^3 + \frac{3-A^2}{3B^2}x + \frac{2A^3-3A}{27B^3}$
• Edwards $ax^2 + y^2 = 1 + dx^2y^2$ or $y^2 = x^3 + \frac{3-\alpha^2}{3\beta^2}x + \frac{2\alpha^3-3\alpha}{27\beta^3}$
where $\alpha = -2\frac{a+d}{a-d}$ and $\beta = \frac{4}{a-d}$.
• Hessian $y^2 + axy + by = x^3$ or
 $y^2 = x^3 + (-27a^4 + 648ab)x + (54a^6 - 1944a^3b + 11664b^2)$.

Goal

- INPUT : A number field K, a prime ℓ and a(α, β) and b(α, β).
- **OUTPUT** : Complete list of equations of negligible density necessary for non-generic valuation $\bar{v}_{\ell}(E_{a,b})$.

Algorithmic search of infinite families Cryptographic applications Computer algebra approach Modular forms approach

Valuation m = 4, Montgomery curve

Theorem

Let $E: By^2 = x^3 + Ax^2 + x$ be a rational elliptic curve with $B(A^2 - 4) \neq 0$. Then the generic average valuation $\bar{\nu}_2(E)$ is ${}^{10}/_3 \approx 3.33$, except,

• If $A^2 - 4 \neq \Box$ i.e. $E(\mathbb{Q})[2] \neq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, we note Ψ be the quartic factor of its 4-division polynomial. Then we have,

Fact. Pat. of Ψ	Condition(s)	Index	Valuation
(2,2)	$A = -2rac{t^4 - 4}{t^4 + 4}$	24	$^{10}/_{3} \approx 3.33$
(4)	$\frac{A\pm 2}{B}=\pm\square$ or $\frac{4B^2}{A^2-4}=-t^4$	12	$^{11}/_3 \approx 3.67$

• If $A^2 - 4 = \Box$ i.e. if $A = \frac{t^2 + 4}{2t}$. Then we have,

Fact. Pat. of Ψ	Condition(s)	Index	Valuation
(1,1,2)	$A = rac{t^4 + 24 t^2 + 16}{4 (t^2 + 4) t}$ and $B = -t (t^2 + 4) \square$	48	$^{14}/_{3} pprox 4.67$
(1,1,2)	$A = rac{t^4 + 24 t^2 + 16}{4 \left(t^2 + 4 ight) t}$	24	$^{23}/_{6} \approx 3.83$
(2,2)	$A = rac{t^2+4}{2t}$ and $rac{A\pm 2}{B} = \Box$	24	$^{13}/_{3} \approx 4.33$
(2,2)	$A = \frac{t^2 + 4}{2t}$	12	$^{11}/_{3} \approx 3.67$

つへで 5/37

Modular forms approach

Theorem (Sutherland, Zywina)

Let E be an elliptic curve and $H \subset GL_2(\mathbb{Z}/\ell^n\mathbb{Z})$ such that $-1 \in H$. Then there exists a polynomial $X_H(j, t)$ such that $Gal(\mathbb{Q}(E[\ell^n])/\mathbb{Q}) \subset H$ if and only if $\exists t_0 \in \mathbb{Q}$ such that $X_H(j(E), t_0) = 0$.

Fast computations of X_{H}

[1] Jeremy Rouse and David Zureick-Brown, "Elliptic curves over $\mathbb Q$ and 2-adic images of Galois" (2015)

• Complete description of possible 2-adic Galois images.

[2] Andrew Sutherland and David Zywina, "Modular curves of prime-power level with infinitely many rational points" (2017)

• Complete description of possible ℓ -adic Galois images contained in subgroups containing -1.

Example			
Curve	<i>j</i> (E)	$#Gal(\mathbb{Q}(E[3])/\mathbb{Q})$	\bar{v}_3
$y^2 = x^3 - 336x + 448$	1792	12	39/32
$y^2 = x^3 - 7^2 \cdot 336x + 7^3 \cdot 448$	1792	6	⁵⁴ /32

The modular forms approach does not work for arbitrary H.

Example			
Curve	<i>j</i> (E)	$#Gal(\mathbb{Q}(E[3])/\mathbb{Q})$	\bar{v}_3
$y^2 = x^3 - 336x + 448$	1792	12	³⁹ /32
$y^2 = x^3 - 7^2 \cdot 336x + 7^3 \cdot 448$	1792	6	⁵⁴ /32

The modular forms approach does not work for arbitrary ${\rm H}.$

Let H be a subgroup of $\operatorname{GL}_2(\mathbb{Z}/\ell^n\mathbb{Z})$.

$$\begin{array}{c|c} -1 \notin H & -1 \in H \\ l = 2 & 1 & 1 \\ l \neq 2 & 2 & 2 \end{array}$$

Our contribution

Complete list of elliptic curves having non-generic Galois image not containing -1.

Modular forms approach

Let \tilde{H} be subgroup of $GL_2(\mathbb{Z}/\ell^n\mathbb{Z})$ containing -1 and let H be subgroup of \tilde{H} such that $\tilde{H} = \langle H, -1 \rangle$.

Cryptographic applications

<ロト < 部 > < 目 > < 目 > 通 > < 目 > (日) 29 / 37

A criterion to choose curves

Notation : $s \sim t$ if $t - \sqrt{t} < s < t + \sqrt{t}$.

p is fixed and E varies (H. Lenstra)

$$\operatorname{Prob}(\#\operatorname{E}(\mathbb{F}_p) \text{ is } \operatorname{B-smooth}) = \frac{1}{\mathcal{O}(\log p)} \operatorname{Prob}(\texttt{a random integer } \sim p \text{ is } \operatorname{B-smooth}).$$

A criterion to choose curves

Notation : $s \sim t$ if $t - \sqrt{t} < s < t + \sqrt{t}$.

p is fixed and E varies (H. Lenstra)

$$\operatorname{Prob}(\#\operatorname{E}(\mathbb{F}_p) \text{ is } \operatorname{B-smooth}) = \frac{1}{\mathcal{O}(\log p)} \operatorname{Prob}(a \text{ random integer } \sim p \text{ is } \operatorname{B-smooth}).$$

E fixed and p varies in $[n - \sqrt{n}, n + \sqrt{n}]$

Can we claim the following?

 $\operatorname{Prob}(\#\operatorname{E}(\mathbb{F}_p) \text{ is } \operatorname{B-smooth}) = \operatorname{Prob}(a \text{ random integer } \sim ne^{\alpha} \text{ is } \operatorname{B-smooth}).$

A criterion to choose curves

Notation : $s \sim t$ if $t - \sqrt{t} < s < t + \sqrt{t}$.

p is fixed and E varies (H. Lenstra)

$$\operatorname{Prob}(\#\operatorname{E}(\mathbb{F}_p) \text{ is } \operatorname{B-smooth}) = \frac{1}{\mathcal{O}(\log p)} \operatorname{Prob}(a \text{ random integer } \sim p \text{ is } \operatorname{B-smooth}).$$

E fixed and p varies in $[n - \sqrt{n}, n + \sqrt{n}]$

Can we claim the following?

 $\operatorname{Prob}(\#\operatorname{E}(\mathbb{F}_p) \text{ is } \operatorname{B-smooth}) = \operatorname{Prob}(a \text{ random integer } \sim ne^{\alpha} \text{ is } \operatorname{B-smooth}).$

Definition

For E an elliptic curve and n, B two integers, $\alpha(E, n, B) \in \mathbb{R}$ is such that

$$\frac{\#\{p \sim n \,|\, \#\mathrm{E}(\mathbb{F}_p) \text{ is B-smooth}\}}{\#\{p \,|\, p \sim n\}} = \frac{\#\{x \sim ne^{\alpha(\mathrm{E},n,\mathrm{B})} \,|\, x \text{ is B-smooth}\}}{\#\{x \,|\, x \sim ne^{\alpha(\mathrm{E},n,\mathrm{B})}\}}.$$

イロト 不得 トイヨト イヨト

Example

Let E : $y^2 = x^3 + 3x + 5$ and $n = 2^{25}$. We compute α for usual values of B.

α(E, <i>n</i> , 30)	-0.79
$\alpha(\mathrm{E}, n, 60)$	-0.83
α(E, <i>n</i> , 90)	-0.82

Example

Let $E: y^2 = x^3 + 3x + 5$ and $n = 2^{25}$. We compute α for usual values of B.

α(E, <i>n</i> , 30)	-0.79
α(E, <i>n</i> , 60)	-0.83
α(E, <i>n</i> , 90)	-0.82

Theorem (Barbulescu and Lachand (2016))

Let f be a quadratic homogeneous polynomial with certain properties.

 $\operatorname{Prob}(f(n), n \sim N \text{ is } B\text{-smooth}) = \operatorname{Prob}(n \text{ of size } Ne^{\alpha(f)} \text{ is } B\text{-smooth}).$

Question : Can we make α independent of *n* and **B**?

31/37

Definition

Let n and B' be integers. We define B' sifted part of n,

$$C_{\mathrm{B}'}(n) = \frac{n}{\prod_{p \leq \mathrm{B}'} p^{\mathrm{v}_p(n)}}.$$

In order to render α independent of n and B, we let $n, B \longrightarrow \infty$ and replace proportions by the density of Chebotarev. Let B' < B.

Montgomery heuristic

If $C_{B'}(x)$ and $C_{B'}(\#E(\mathbb{F}_p))$ are of the same size then x and $\#E(\mathbb{F}_p)$ have the same chances of being B-smooth.

Thus when B' and $x \to \infty$, we expect,

$$lpha + \log(n) - \sum_{\ell} ar{v}_{\ell}(x) \log(\ell) = \log(n) - \sum_{\ell} ar{v}_{\ell}(\mathrm{E}) \log(\ell).$$

This prompts us to define the following.

Formal definition of $\alpha(E)$

Assuming the convergence for now,

Definition

Let E be an elliptic curve and ℓ a prime. Let $\alpha_{\ell}(\mathsf{E}) = (\frac{1}{\ell-1} - \bar{\nu}_{\ell}(\mathsf{E})) \log \ell$. We define,

$$\alpha(\mathbf{E}) = \sum_{\ell} \alpha_{\ell}(\mathbf{E}).$$

Existence and computation of $\alpha(E)$

Calculations of $\bar{v}_{\ell}(E)$ can be done explicitly using the image of ℓ^n -torsion field.

Generic case

Let E_g be such that for all primes ℓ and for all $k \ge 1$, we have $\operatorname{Gal}(\mathbb{Q}(\operatorname{E}_g[\ell^k])/\mathbb{Q}) = \operatorname{GL}_2(\mathbb{Z}/\ell^k\mathbb{Z})$. In this case, we get $\overline{v}_\ell(\operatorname{E}_g) = \frac{(\ell^3 + \ell^2 - 2\ell - 1)\ell}{(\ell+1)^2(\ell-1)^3}$ and numerically $\alpha(\operatorname{E}_g) \approx -0.811997734$.

Existence and computation of $\alpha(E)$

Calculations of $\bar{v}_{\ell}(E)$ can be done explicitly using the image of ℓ^n -torsion field.

Generic case

Let E_g be such that for all primes ℓ and for all $k \ge 1$, we have $\operatorname{Gal}(\mathbb{Q}(\operatorname{E}_g[\ell^k])/\mathbb{Q}) = \operatorname{GL}_2(\mathbb{Z}/\ell^k\mathbb{Z})$. In this case, we get $\bar{v}_{\ell}(\operatorname{E}_g) = \frac{(\ell^3 + \ell^2 - 2\ell - 1)\ell}{(\ell + 1)^2(\ell - 1)^3}$ and numerically $\alpha(\operatorname{E}_g) \approx -0.811997734$.

Non-generic cases

According to a theorem of Serre, for every elliptic curve without complex multiplication, there are only finitely many primes ℓ for which $\operatorname{Gal}(\mathbb{Q}(\mathbb{E}[\ell^k])/\mathbb{Q})$ can be different than $\operatorname{GL}_2(\mathbb{Z}/\ell^k\mathbb{Z})$. Thus in this case, α differs by only finitely many terms in its defining series.

Existence and computation of $\alpha(E)$

Calculations of $\bar{v}_\ell(E)$ can be done explicitly using the image of ℓ^n -torsion field.

Generic case

Let E_g be such that for all primes ℓ and for all $k \ge 1$, we have $\operatorname{Gal}(\mathbb{Q}(\operatorname{E}_g[\ell^k])/\mathbb{Q}) = \operatorname{GL}_2(\mathbb{Z}/\ell^k\mathbb{Z})$. In this case, we get $\bar{v}_{\ell}(\operatorname{E}_g) = \frac{(\ell^3 + \ell^2 - 2\ell - 1)\ell}{(\ell + 1)^2(\ell - 1)^3}$ and numerically $\alpha(\operatorname{E}_g) \approx -0.811997734$.

Non-generic cases

According to a theorem of Serre, for every elliptic curve without complex multiplication, there are only finitely many primes ℓ for which $\operatorname{Gal}(\mathbb{Q}(\mathbb{E}[\ell^k])/\mathbb{Q})$ can be different than $\operatorname{GL}_2(\mathbb{Z}/\ell^k\mathbb{Z})$. Thus in this case, α differs by only finitely many terms in its defining series.

Remark

Serre also conjectured that for every prime $\ell > 37$, $\operatorname{Gal}(\mathbb{Q}(\mathbb{E}[\ell^k])/\mathbb{Q}) = \operatorname{GL}_2(\mathbb{Z}/\ell^k\mathbb{Z})$. This enables us to compute α for any given curve effectively assuming the conjecture. Andrew Sutherland has verified this conjecture with the curves in Cremona database.

α : An efficient tool

$$\alpha_{\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/8\mathbb{Z}} = \alpha_{generic} + (14/9 - 16/3)\log(2) \approx -3.4355$$

2 Suyama-11 family : For these curves, \bar{v}_2 changes from $\frac{14}{9}$ to $\frac{11}{3}$ and \bar{v}_3 changes from $\frac{87}{128}$ to $\frac{27}{16}$. Thus,

 $\alpha_{\textit{Suyama}-11} = \alpha_{\textit{generic}} + (14/9 - 11/3) \log(2) + (87/128 - 27/16) \log(3) \approx -3.3825.$

α : An efficient tool

 $\label{eq:curves} \textbf{O} \quad \mbox{Curves with torsion $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/8\mathbb{Z}$: For these curves \bar{v}_2 changes from $\frac{14}{9}$ to $\frac{16}{3}$. Thus, $$ \end{tabular}$

$$\alpha_{\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/8\mathbb{Z}} = \alpha_{generic} + (14/9 - 16/3)\log(2) \approx -3.4355$$

 $\alpha_{\textit{Suyama}-11} = \alpha_{\textit{generic}} + (14/9 - 11/3) \log(2) + (87/128 - 27/16) \log(3) \approx -3.3825.$

Numerical experiments with α . ($n = 2^{25}$)

() Curves with torsion $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$.

	п	ne^{α}	$\#E(\mathbb{F}_p)$	error _n	$\operatorname{error}_{ne^{\alpha}}$
$B_1 = 30$	0.000518	0.005753	0.005126	889 %	10.89 %
$B_2 = 100$	0.008892	0.03883	0.042573	378.8 %	9.63 %

O Suyama-11

	n	ne^{α}	$\#E(\mathbb{F}_p)$	error _n	$\operatorname{error}_{ne^{\alpha}}$
$B_1 = 30$	0.000518	0.005133	0.005743	1008 %	11.89 %
$B_2 = 100$	0.008892	0.04013	0.04101	361%,	2.19%

540

Some other families

<i>j</i> (<i>t</i>)	$\alpha(\mathbf{E}_{j(t)})$
$rac{(t^9+9t^6+27t^3+3)^3(t^3+3)^3}{(t^6+9t^3+27)t^3}$	-1.5873
$rac{256(t^8+8t^6+20t^4+16t^2+1)^3}{(t^2+4)(t^2+2)^2t^2}$	-2.2176
$rac{(t^8-16t^4+16)^3}{(t^4-16)t^4}$	-2.3908
$rac{-16(t^{16}-16t^8+16)^3}{(t^8-1)t^{32}}$	-2.4486
$\frac{(t^{16} - 8t^{14} + 12t^{12} + 8t^{10} + 230t^8 + 8t^6 + 12t^4 - 8t^2 + 1)^3}{(t^4 - 6t^2 + 1)^2(t^2 + 1)^4(t^2 - 1)^8t^8}$	-2.6219
$\frac{(t^{16} - 8t^{14} + 12t^{12} + 8t^{10} + 230t^8 + 8t^6 + 12t^4 - 8t^2 + 1)^3}{(t^4 - 6t^2 + 1)^2(t^2 + 1)^4(t^2 - 1)^8t^8}$	-3.4355

36 / 37

Theorem

There are only finitely many values of $\alpha(E).$ And the best among them is approximately -3.43.

Theorem

There are only finitely many values of $\alpha(E)$. And the best among them is approximately -3.43.

Open questions

• Proving theoretically that α works.

Theorem

There are only finitely many values of $\alpha(E)$. And the best among them is approximately -3.43.

Open questions

- Proving theoretically that α works.
- There are curves where 2-Galois and 3-Galois are generic however 6-Galois is not. To what extent can these curves be used for ECM ?

Theorem

There are only finitely many values of $\alpha(E)$. And the best among them is approximately -3.43.

Open questions

- Proving theoretically that α works.
- There are curves where 2-Galois and 3-Galois are generic however 6-Galois is not. To what extent can these curves be used for ECM ?
- Generalising the above work over number fields. In the NFS algorithm for discrete logarithms, one can have to factor many integers of the form $a^4 + b^4$. In this case, we search families over $\mathbb{Q}(\zeta_8)$.

Theorem

There are only finitely many values of $\alpha(E)$. And the best among them is approximately -3.43.

Open questions

- Proving theoretically that α works.
- There are curves where 2-Galois and 3-Galois are generic however 6-Galois is not. To what extent can these curves be used for ECM ?
- Generalising the above work over number fields. In the NFS algorithm for discrete logarithms, one can have to factor many integers of the form $a^4 + b^4$. In this case, we search families over $\mathbb{Q}(\zeta_8)$.

Thank you!