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Stream ciphers



Stream ciphers

• Symetric cryptography, 6= block ciphers

• Based on Vernam cipher (one-time pad)

• PRNG

Key IV

PRNG st : keystream

plaintext ciphertext
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Stream ciphers

• Block cipher modes of operations (OFB, Counter)

• Specific design (LFSR, NLFSR)

• Internal state

• Large period

• A5/1 - A5/2, SNOW

Interests

• Small latency

• No padding

• No error propagation

• Cheap
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Generic attacks

f

X

Φ • Key recovering

• Initial state recovering

• Next-bit prediction

• distinguishing st from a random
sequence

Always take an internal state twice bigger as the security level (i.e. key
size)
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LFSR



Linear feedback shift Register (LFSR)

Definition
Fibonacci representation

c1 c2 cn−1 cn

st+n−1 st+n−2 st+1 st

Definition
Gallois representation

cn−1 cn−2 c1cn

st+n−1 st+n−2 st+1 st
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Classical properties of LFSR

• Nice statistical properties

• Linear

• st+L = ∑
n
i=1 cist+n−i , ∀t ≤ 0

• P(X) = 1−∑
n
i=1 ciX i

• P∗(X) = X nP(1/X)

• We wil take P primitive
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Filtered LFSR

f

X

Φ

LFSR

st

f

st = f (ut+γ1 , · · · ,ut+γn )

Algebraic Normal Form

f (x1,x2, · · · ,xn) = ∑
u∈Fn

2

au

n

∏
i=1

xui
i

= a0 + a1x1 + a2x2 + · · ·+ a3x1x2 + · · ·+ a2n−1x1 · · ·xn
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Monomial equivalence



LFSR over a Finite Field

• α : root of the primitive characteristic polynomial in F2n

• Identify the n-bit words with elements of F2n with the dual basis of
{1,α,α2, · · · ,αn−1}

c1 c2 cn−1 cn

st+n−1 st+n−2 st+1 st

Proposition

The state of the LFSR at time (t + 1) is the state of the LFSR at time t
multiplied by α.

For all t , Xt = X0αt
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Boolean functions

Proposition (Univariate representation)

F(X) =
2n−1

∑
i=0

AiX
i

with Ai ∈ F2n given by the discrete Fourier Transform of F

For all t , st = F(X0αt )
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Monomial equivalence [Rønjom - Cid 2010]

F

st

(P,α)

n

X0

For all t , st = F(X0αt )

Y0

G

s′t

(Q,β)

n

β = αk with gcd(k ,2n−1) = 1
s′t = G(Y0βt ) = G(Y0αkt )

If G(x) = F(x r )

with rk ≡ 1 mod (2n−1)

Then s′t = F(Y r
0αt )

For all t , s′t = st if Y0 = X k
0

11



Monomial equivalence [Rønjom - Cid 2010]

F

st

(P,α)

n

X0

For all t , st = F(X0αt )

Y0

G

s′t

(Q,β)

n

β = αk with gcd(k ,2n−1) = 1

s′t = G(Y0βt ) = G(Y0αkt )

If G(x) = F(x r )

with rk ≡ 1 mod (2n−1)

Then s′t = F(Y r
0αt )

For all t , s′t = st if Y0 = X k
0

11



Monomial equivalence [Rønjom - Cid 2010]

F

st

(P,α)

n

X0

For all t , st = F(X0αt )

Y0

G

s′t

(Q,β)

n

β = αk with gcd(k ,2n−1) = 1
s′t = G(Y0βt ) = G(Y0αkt )

If G(x) = F(x r )

with rk ≡ 1 mod (2n−1)

Then s′t = F(Y r
0αt )

For all t , s′t = st if Y0 = X k
0

11



Monomial equivalence [Rønjom - Cid 2010]

F

st

(P,α)

n

X0

For all t , st = F(X0αt )

Y0

G

s′t

(Q,β)

n

β = αk with gcd(k ,2n−1) = 1
s′t = G(Y0βt ) = G(Y0αkt )

If G(x) = F(x r )

with rk ≡ 1 mod (2n−1)

Then s′t = F(Y r
0αt )

For all t , s′t = st if Y0 = X k
0

11



Monomial equivalence [Rønjom - Cid 2010]

F

st

(P,α)

n

X0

For all t , st = F(X0αt )

Y0

G

s′t

(Q,β)

n

β = αk with gcd(k ,2n−1) = 1
s′t = G(Y0βt ) = G(Y0αkt )

If G(x) = F(x r )

with rk ≡ 1 mod (2n−1)

Then s′t = F(Y r
0αt )

For all t , s′t = st if Y0 = X k
0

11



Example

F(x) = Tr(x r ), with gcd(r ,2n−1) = 1 :
Let k be such that rk ≡ 1 mod (2n−1).

Tr(x r )

st

st

(P,α)

(Q,β = αk )

n

n

=⇒ The initial generator is equivalent to a plain LFSR of the same size.
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Consequence
The security level of a filtered LFSR is the minimal security level for a
generator of its equivalence class.

• Algebraic attacks

• Correlation attacks
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Algebraic attacks

Λ : Linear complexity

Proposition (Massey-Serconek 94)
Let an LFSR of size n filtered by a Boolean function F :

F(X) =
2n−1

∑
i=0

AiX
i

Then
Λ = #{0≤ i ≤ 2n−2 : Ai 6= 0}

The monomial equivalence does not affect the complexity of algebraic
attacks [Gong et al. 11]
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Univariate correlation attacks



Correlation attack [Siegenthaler 85]

LFSRk

LFSRk−1

LFSR2

LFSR1

f st Compare

LFSRi

σt
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Criterion

The criterion besides the correlation attack is the resiliency.
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Fast correlation attack [Meier - Staffelbach 88]

Pα F

st

Pα Tr(Ax)

σt

Compare

X0

X0
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Criterion

The criterion besides the fast correlation attack is the non-linearity.
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Generalized fast correlation attacks

G(x) = Tr(Axk )

Pα F

st

Pα G
σt

Compare

X0

X0

Pα F

st

X0

Compare

σt

Pαk

X k
0
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Generalized non-linearity [Gong & Youssef 01]

Relevant security criterion:

Generalized non-linearity

GNL(f ) = d(f ,{Tr(λxk ,λ ∈ F2n ,gcd(k ,2n−1) = 1})

And if k is not coprime to 2n−1 ?
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A more efficient correlation attack

When gcd(k ,2n−1) > 1 and F correlated to G(X) = H(X k ).

Pα F

st

Pα G
σt

Compare

X0

X0

Pα F

st

Pαk H
σt

Compare

X0

X k
0

• Number of states of the small generator: τk = ord(αk ).

• Exhaustive search on X k
0 : Time = τk log(τk )

ε2
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Recovering the remaining bits of the initial state

Property

We get log2(τk ) bits of information on X0 where τk = ord(αk ):

If we perform two distinct correlation attacks with k1 et k2, then we get
log2(lcm(τk1 ,τk2 )) bits of information.
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First improvement

The complexity

Time =
τk log(τk )

ε2

can be reduced to

Time = τk logτk +
2 log(τk )

ε2 .

with a fast Fourier transform [Canteaut - Naya-Plasencia 2012]
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Second improvement

G(X) = H(X k ) when H is linear:

Pα F

st

Pα G
σt

Compare

X0

X0

Pα F

st

X0

Compare

σt

Pαk

X k
0

• Size of the small LFSR: L(k) = ord(2) mod τk .

• If L(k) < n and H is linear −→ fast correlation attack.
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What we really do

• Split the state on the multiplicative subgroups

• recover independantly the information

• gather information
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Impact on Boolean functions



New criterion

Definition (Multiplicative subgroup resiliency ?)

Let F be a Boolean function with n variables, let k dividing 2n−1, and τ the
multiplicative order of αk and d = gcd(k ,τ), we say that F is k - MS resilient
if and only if

max
G(x)=H(xk )

ε(F(x),G(x)) =
τ

d
2−n

Question

Is it possible to reach the value of τ/d for every possible τ ?
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When H is linear

Question
What is the value of

min
f

max
G(x)=Tr(λxk )

ε(F(x),G(x))
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Conclusions



Conclusion and open questions

Conclusion

• Generalized criterion for f besides the generalized non-linearity.

• The attack does not apply when (2n−1) is prime.

Open questions

• Find good filtering Boolean functions ?

• Compute efficiently a good approximation of the filtering function ?
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Thank You for your attention !

Questions ?
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