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McEliece scheme

McEliece scheme

It is the first public key cryptosystem based on error-correcting codes.
Advantages:

Fast encryption and decryption.
Candidate for post-quantum cryptography

Drawback:
Large key size

Structural attacks
→ Let F be any family of linear codes.
→ Let G be a random looking generator matrix of a code C ∈ F .

From G , can we recover the structure of the code C?
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McEliece scheme

Some propositions

Binary Goppa codes (McEliece, 1978)
→ No structural attack

Generalised Reed-Solomon (GRS) (Niederreiter, 1986)
→ [Sidelnikov, Shestakov,1992]

Algebraic-geometry (AG) codes (Janwa, Moreno, 1996)
→ [Faure, Minder, 2009]
→ [Couvreur, Márquez-Corbella, Pellikaan, 2014]

Concatenation of AG codes (Janwa, Moreno, 1996)
→ [Sendrier,1998] (for all concatenated codes)

Subfied subcodes of AG codes (Janwa, Moreno, 1996)
→ No structural attack
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McEliece scheme

Some propositions with compact keys

Quasi-cyclic alternant codes (Berger, Cayrel, Gaborit, Otmani, 2009)
Quasi-dyadic alternant codes (Misoczki, Baretto, 2009)

Structural attacks:
→ [Faugère, Otmani, Perret, Tillich, 2010]
→ [Faugère, Otmani, Perret, Portzamparc, Tillich, 2015]
→ [B., 2017]
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Algebraic-geometry codes

Functions on a curve X

We consider an algebraic curve X ⊂ P2(Fqm), with affine equation:

F (x , y) = 0.

The function field over Fqm of X , denoted by Fqm(X ) is the fraction field
of Fqm [x , y ]/(F ).

A divisor of X is a formal sum, with integer coefficients, of points of X .
For g ∈ Fqm(X ), the principal divisor of g, denoted by (g), is defined as
the formal sum of zeros and poles of g , counted with multiplicity.

We denote by L(G ) := {g ∈ Fqm(X ) | (g) ≥ −G} ∪ {0}, the
Riemann-Roch space associated to a divisor G .
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Algebraic-geometry codes

AG codes on X

Definition
Let P = {P1, . . . ,Pn} be a set of n distinct rational points of X and G be
a divisor, then the AG code CL(X ,P,G ) is defined by:

CL(X ,P,G ) := {EvP(f ) | f ∈ L(G )}.

Fqm CL(X ,P,G ) oo
Dual // CL(X ,P,G ′)

Subfield Subcode

Fq CL(X ,P,G ′) ∩ Fn
q

Ar (X ,P,G ) := CL(X ,P,G ′) ∩ Fn
q, where r = dim(CL(X ,P,G )).
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Security of Quasi-cyclic Alternant Codes on P1 Induced permutations of Alternant Codes

AG codes on P1

Let P = {P1, . . . ,Pn} be a set of n distinct points of P1
Fqm

and G be a
divisor, then the AG code CL(P1,P,G ) is defined by:

CL(P1,P,G ) := {EvP(f ) | f ∈ L(G )}.

Proposition

The AG code CL(P1,P,G ) is the GRS code :

GRSk(x , y) := {(y1f (x1), . . . , ynf (xn)) | f ∈ Fqm [X ]<k}.

where:
→ P := {(xi : 1)| i ∈ {1, . . . , n}},
→ G := (k − 1)P∞ − (g),

with g ∈ Fqm(P1) a function such that for all i ∈ {1, . . . , n},
g(xi ) = yi 6= 0.
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Security of Quasi-cyclic Alternant Codes on P1 Induced permutations of Alternant Codes

Automorphim group of P1

PGL2(Fqm) is the automorphism group of the projective line P1 defined by:

PGL2(Fqm) :=
{ P1

Fqm
→ P1

Fqm

(x : y) 7→ (ax + by : cx + dy)

∣∣∣{a, b, c , d ∈ Fqm ,

ad − bc 6= 0

}
.

Remark
The permutations of PGL2(Fqm) have also a matrix representation, ie:

∀σ ∈ PGL2(Fqm), we write σ :=

(
a b
c d

)
, with ad − bc 6= 0.

Where the elements a, b, c and d are defined up to a multiplication by a
nonzero scalar.
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Security of Quasi-cyclic Alternant Codes on P1 Induced permutations of Alternant Codes

Support and divisor σ-invariant

Let σ be an automorphism of P1
Fqm

.

For a point Q ∈ P1, we denote Orbσ(Q) := {σj(Q) | j ∈ {1..`}}.
We define the support:

P :=

n/`∐
i=1

Orbσ(Qi ), (1)

where the points Qi ∈ P1
Fqm

are pairwise distinct with trivial stabilizer
subgroup.

We define the divisor:

G := t
∑̀
j=1

σj(R), (2)

with R a point of P1
Fqm

, t ∈ Z and deg(G ) = `t.
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Security of Quasi-cyclic Alternant Codes on P1 Induced permutations of Alternant Codes

Permutations of Ar(P1,P ,G )

The automorphism σ of P1 induces a permutation σ̃ of C = CL(P1,P,G )
defined by:

σ̃ : C −→ C
(f (P1), . . . , f (Pn)) 7−→ (f (σ(P1)), . . . , f (σ(Pn)))·

Then σ̃ is also a permutation of A := C⊥ ∩ Fn
q.
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Security of Quasi-cyclic Alternant Codes on P1 Induced permutations of Alternant Codes

Equivalence classes of PGL2(Fqm)

Lemma

Let ρ ∈ PGL2(Fqm) be an automorphism on P1. Then σ′ := ρ ◦ σ ◦ ρ−1
induces the same permutation on C as σ.

Three cases are possible, depending on the eigenvalues of the matrix
M := Mat(σ):

1 M ∼
(
1 b
0 1

)
, with b ∈ Fqm ,

2 M ∼
(
a 0
0 1

)
, with a ∈ Fqm or a ∈ Fq2m\Fqm .
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Security of Quasi-cyclic Alternant Codes on P1 Invariant and Folded Codes

Invariant and folded codes: definitions

Let C be a linear code and σ ∈ Perm(C) of order `. Consider:

ϕ : c ∈ C 7→
`−1∑
i=0

σi (c).

The folded code of C is defined by

Foldσ(C) := Im(ϕ)

and the invariant code of C is defined by

Cσ := ker(σ − Id).

Proposition

The codes Foldσ(C) and Cσ are subcodes of C and:

Foldσ(C) ⊆ Cσ.

If Char (Fqm) - ` then Foldσ(C) = Cσ.
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Security of Quasi-cyclic Alternant Codes on P1 Invariant and Folded Codes

Invariant code of Ar(P1,P ,G )

If C is a linear code over Fqm , σ-invariant then:

(C ∩ Fn
q)
σ = {c ∈ C | c ∈ Fn

q and σ(c) = c} = Cσ ∩ Fn
q.

Theorem

Let CL(P1,P,G ) ⊆ Fn
qm be a σ-invariant AG code, with σ ∈ PGL2(P1

Fqm
)

of order ` and P and G defined as (1) and (2). Then the invariant code
CL(P1,P,G )σ is a GRS code of dimension k/` and length n/`.

Corollary

The invariant code Ar (P1,P,G )σ is an alternant code of order r/` and
length n/`.
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Security of Quasi-cyclic Alternant Codes on P1 Invariant and Folded Codes

Lemma

Let c := EvP(f ) ∈ CL(P1,P,G ) such that σ(c) = c , then f is σ-invariant,
ie: f ◦ σ = f .

Let G := t
∑̀
j=1

σj(R), with R a rational point of P1
Fqm

and t ∈ Z. We

denote:
σj(R) := (γj : δj), for j ∈ {0, . . . , `− 1}.

Lemma
With the previous notation, any f ∈ L(G ) can be written as:

f (X ,Y ) =
F (X ,Y )

`−1∏
j=0

(δjX − γjY )t
,

with F ∈ Fqm [X ,Y ] a homogeneous polynomial of degree t`.
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Security of Quasi-cyclic Alternant Codes on P1 Invariant and Folded Codes

Case σ trigonalizable over Fqm :

σ : P1
Fqm

→ P1
Fqm

(X : Y ) 7→ (X + bY : Y )

with b ∈ F∗qm .
Case σ diagonalizable over Fqm :

σ : P1
Fqm

→ P1
Fqm

(X : Y ) 7→ (aX : Y ),

with a ∈ Fqm .
Case σ diagonalizable over Fq2m\Fqm :

σ : P1
Fq2m

→ P1
Fq2m

(X : Y ) 7→ (aX : Y ),

with a ∈ Fq2m\Fqm .
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Security of Quasi-cyclic Alternant Codes on P1 Invariant and Folded Codes

Case σ trigonalizable over Fqm

Proposition

If F (X + bY ,Y ) = F (X ,Y ), then

F (X ,Y ) = R(X p − bp−1XY p−1,Y p)

with R ∈ Fq[X ,Y ] a homogeneous polynomial of degree t.

We denote σj(Pi ) := (αi`+j : βi`+j), for i ∈ {0, . . . , n` − 1},
j ∈ {0, . . . , `− 1}.

Proposition

The code CL(P1,P,G )σ is the GRS code CL(P1, P̃, G̃ ), with:
P̃i = (αp

i − bp−1αiβ
p−1
i : βpi ),

G̃ = t(R̃), where R̃ =
(
(−1)p−1

p−1∏
j=0

γj :
p−1∏
j=0

δj
)
.
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Security of Quasi-cyclic Alternant Codes on P1 Invariant and Folded Codes
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Security of Quasi-cyclic Alternant Codes on P1 Invariant and Folded Codes

Case σ diagonalizable over Fq2m\Fqm

Idea
We extend the code C defined on Fqm to the field Fq2m . We consider
C ⊗ Fq2m := SpanFq2m

(C), we have:

C ⊗ Fq2m = {EvP(f ) | f ∈ LFq2m
(G )}.

Fq2m C ⊗ Fq2m
Invσ // (C ⊗ Fq2m)σ

Fqm C Invσ //?�

Sub. Sub.

OO

Cσ
?�

OO

E. Barelli (INRIA Saclay and LIX) Security of Compact McEliece Scheme June 16, 2017 22 / 35



Security of Quasi-cyclic Alternant Codes on P1 Invariant and Folded Codes

Case σ diagonalizable over Fq2m\Fqm

Idea
We extend the code C defined on Fqm to the field Fq2m . We consider
C ⊗ Fq2m := SpanFq2m

(C), we have:

C ⊗ Fq2m = {EvP(f ) | f ∈ LFq2m
(G )}.

Fq2m C ⊗ Fq2m
Invσ // (C ⊗ Fq2m)σ

Fqm C Invσ //?�

Sub. Sub.

OO

Cσ
?�

OO

E. Barelli (INRIA Saclay and LIX) Security of Compact McEliece Scheme June 16, 2017 22 / 35



Security of Quasi-cyclic Alternant Codes on P1 Invariant and Folded Codes

Case σ diagonalizable over Fq2m\Fqm

Idea
We extend the code C defined on Fqm to the field Fq2m . We consider
C ⊗ Fq2m := SpanFq2m

(C), we have:

C ⊗ Fq2m = {EvP(f ) | f ∈ LFq2m
(G )}.

Fq2m C ⊗ Fq2m
Invσ // (C ⊗ Fq2m)σ = CL(P1, P̃, G̃ )Fq2m

Fqm C Invσ //?�

Sub. Sub.

OO

Cσ
?�

OO
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Alternant codes on cyclic cover of P1 Codes with automorphisms

Cyclic cover of P1

We consider the curve:

X : y ` = f (x)

and the automorphism:

σ : X −→ X
(x : y) 7−→ (x : ξy)

where ξ is a `-th root of unity.

Q1

σ(Q1)

σ2(Q1)
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Alternant codes on cyclic cover of P1 Codes with automorphisms

Support and divisor σ-invariant

For a point Q ∈ X , we denote Orbσ(Q) := {σj(Q) | j ∈ {1..`}}.
We define the support:

P :=

n/`∐
i=1

Orbσ(Qi ), (3)

where the points Qi ∈ X are pairwise distinct with trivial stabilizer
subgroup.

We define the divisor:

G := s P∞, (4)

with s ∈ N∗, and P∞ the point at infinity of the curve X .

σ-invariant code
The automorphism σ induces a permutation on C = CL(X ,P,G ).
The subfield subcode A := C ∩ Fn

q, is also σ-invariant.
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Alternant codes on cyclic cover of P1 Security

Theorem
Let C := CL(X ,P,G ) be an AG
code, with P and G define as (3)
and (4), and σ ∈ Perm(C) of
order `, then:

Inv(C) = CL(P1, P̃, G̃ ),

of length n
` and dimension s

` .

Corollary
The invariant code
Inv(Ar (X ,P,G )) is an alternant
code of order r

` and length n
` .

Q1

σ(Q1)

σ2(Q1)

Q2

σ(Q2)

σ2(Q2)

G = sP∞

Q̃1 Q̃2 G̃ = s
`
P∞

P1

X
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Alternant codes on the Hermitian curve Invariant code and quotient curve

Invariant code of σ-invariant AG codes

Lemma
Let c := EvP(f ) ∈ CL(X ,P,G ), with deg(G ) < n, such that σ(c) = c ,
then f is σ-invariant, ie: f ◦ σ = f .

X

��

σ

��
Fq(X )

X/〈σ〉 Fq(X )σ
`

σ ∈ Aut(X ) of order `.

Theorem
Let P be a σ-invariant set of rational
points of X and G be a σ-invariant
divisor of X , then:

Invσ(CL(X ,P,G )) = CL(X/〈σ〉, P̃, G̃ )

where P̃ is a set of points of X/〈σ〉 and
G̃ is a divisor of X/〈σ〉.
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Alternant codes on the Hermitian curve Invariant code and quotient curve

Quotient curves of H
Let Fq2

0
be a finite field and consider the Hermitian curve, denoted by H of

equation:
yq0 + y = xq0+1.

We denote A(P∞) := {σ ∈ Aut(H) | σ(P∞) = P∞} then σ ∈ A(P∞) is
described by: {

σ(x) = ax + b,

σ(y) = aq0+1y + abq0x + c ,

with a ∈ F∗
q2
0
, b ∈ Fq2

0
and bq0+1 = cq0 + c .

If we choose a 6= 1 such that aq0−1 = 1, then ord(σ) = ord(a) and the
genus of the quotient curve is ([Bassa, Ma, Xing, Yeo, 2013]):

g(H/〈σ〉) = q0 − 1
2

.
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Alternant codes on the Hermitian curve Security analysis

Security of the invariant code

The invariant code of an alternant AG code is an alternant AG code
No specific attacks known for alternant AG codes

Exhaustive search on the divisor:
We say that C1 and C2 are diagonal-equivalent, and we note C1 ∼ C2, if
there exist λ1, . . . , λn nonzero elements such that:

C2 = {(λ1c1, . . . , λncn) | (c1, . . . , cn) ∈ C1}.

Theorem ([Munuera, Pellikaan, 1993])

If P is a set of n > 2g − 2 rational points of X , where g is the genus of X ,
and G and H are two divisors of the same degree 2g − 1 < t < n− 1, then:

CL(X ,P,G ) ∼ CL(X ,P,H)⇔ G ∼ H.
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Alternant codes on the Hermitian curve Security analysis

Number of non equivalent AG codes

We denote Divt(X ) the group of divisors on X of degree t and P(X ) the
group of principal divisors on X . Then we define the quotient group
Pic0(X ) := Div0(X )/P(X ).

For a fix dimension, the number of non equivalent AG codes on X with the
support P is:

#AGcode(X ,P) = #Pic0(X ).

For the curve H/〈σ〉 on Fq2
0
:

#Pic0(H/〈σ〉) ≈ q0
2g

g = q0−1
2

n ≈ q30

#AGcode(H,P) ≈ ( 3
√
n)

3√n
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Alternant codes on the Hermitian curve Security analysis

Number of non equivalent alternant AG codes

We look at non equivalent alternant of AG codes (on Fq):

#A(X ,P) ≤ (qm(n−1) − qn−1)#Pic0(X ).

Examples of parameters:

q0 n k ISD #Pic0(H/σ) #A(H/σ,P) Key size
11 1100 729 118 234 27634 163 Kbits
16 1950 1469 116 260 − 250 Kbits
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Conclusion

Conclusion

Results:
1 Quasi-cyclic codes on P1

The invariant code of a quasi-cyclic GRS code is a GRS code.
The security of alternant codes with induced permutation from the
projective linear group, is reduced to the security of the invariant code
which is an alternant code.

2 Codes on cyclic cover of P1

We can recover the invariant code.
Thanks to the invariant code we can recover the support and the curve.

3 Codes on Hermitian curve
Automorphism σ such that the quotient curve H/〈σ〉 is not P1

Maximal curve → good parameters for the code

Perspectives:
1 Codes on cyclic cover of the Hermitian curve
2 Codes on cyclic cover of random plane curves

Thank you!
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