On the security of Some Compact Keys for McEliece Scheme

Élise Barelli

INRIA Saclay and LIX, CNRS UMR 7161 École Polytechnique, 91120 Palaiseau Cedex

June 16, 2017

- 2 Algebraic-geometry codes
- 3 Security of Quasi-cyclic Alternant Codes on \mathbb{P}^1
 - Induced permutations of Alternant Codes
 - Invariant and Folded Codes
 - 4) Alternant codes on cyclic cover of \mathbb{P}^1
 - Codes with automorphisms
 - Security
- 5 Alternant codes on the Hermitian curve
 - Invariant code and quotient curve
 - Security analysis

- Algebraic-geometry codes
- 3 Security of Quasi-cyclic Alternant Codes on P¹
 Induced permutations of Alternant Codes
 Invariant and Folded Codes
- 4 Alternant codes on cyclic cover of \mathbb{P}^1
 - Codes with automorphisms
 - Security
- 5 Alternant codes on the Hermitian curve
 - Invariant code and quotient curve
 - Security analysis

Conclusion

It is the first public key cryptosystem based on error-correcting codes. Advantages:

- Fast encryption and decryption.
- Candidate for post-quantum cryptography

Drawback:

• Large key size

4 / 35

It is the first public key cryptosystem based on error-correcting codes. Advantages:

- Fast encryption and decryption.
- Candidate for post-quantum cryptography

Drawback:

Large key size

Structural attacks

 $\rightarrow\,$ Let ${\cal F}$ be any family of linear codes.

 \rightarrow Let G be a random looking generator matrix of a code $\mathcal{C} \in \mathcal{F}$.

From G, can we recover the structure of the code C?

- Binary Goppa codes (McEliece, 1978)
 - \rightarrow No structural attack

5 / 35

- Binary Goppa codes (McEliece, 1978)
 - ightarrow No structural attack
- Generalised Reed-Solomon (GRS) (Niederreiter, 1986)
 - \rightarrow [Sidelnikov, Shestakov,1992]

5 / 35

- Binary Goppa codes (McEliece, 1978)
 - ightarrow No structural attack
- Generalised Reed-Solomon (GRS) (Niederreiter, 1986)
 - \rightarrow [Sidelnikov, Shestakov, 1992]
- Algebraic-geometry (AG) codes (Janwa, Moreno, 1996)
 - \rightarrow [Faure, Minder, 2009]
 - \rightarrow [Couvreur, Márquez-Corbella, Pellikaan, 2014]

- Binary Goppa codes (McEliece, 1978)
 - ightarrow No structural attack
- Generalised Reed-Solomon (GRS) (Niederreiter, 1986)
 - \rightarrow [Sidelnikov, Shestakov,1992]
- Algebraic-geometry (AG) codes (Janwa, Moreno, 1996)
 - \rightarrow [Faure, Minder, 2009]
 - \rightarrow [Couvreur, Márquez-Corbella, Pellikaan, 2014]
- Concatenation of AG codes (Janwa, Moreno, 1996)
 - \rightarrow [Sendrier,1998] (for all concatenated codes)

- Binary Goppa codes (McEliece, 1978)
 - ightarrow No structural attack
- Generalised Reed-Solomon (GRS) (Niederreiter, 1986)
 - \rightarrow [Sidelnikov, Shestakov,1992]
- Algebraic-geometry (AG) codes (Janwa, Moreno, 1996)
 - \rightarrow [Faure, Minder, 2009]
 - \rightarrow [Couvreur, Márquez-Corbella, Pellikaan, 2014]
- Concatenation of AG codes (Janwa, Moreno, 1996)
 - \rightarrow [Sendrier,1998] (for all concatenated codes)
- Subfied subcodes of AG codes (Janwa, Moreno, 1996)
 - \rightarrow No structural attack

Some propositions with compact keys

- Quasi-cyclic alternant codes (Berger, Cayrel, Gaborit, Otmani, 2009)
- Quasi-dyadic alternant codes (Misoczki, Baretto, 2009)

Structural attacks:

- \rightarrow [Faugère, Otmani, Perret, Tillich, 2010]
- \rightarrow [Faugère, Otmani, Perret, Portzamparc, Tillich, 2015] \rightarrow [B., 2017]

Algebraic-geometry codes

- 3 Security of Quasi-cyclic Alternant Codes on P¹
 Induced permutations of Alternant Codes
 Invariant and Folded Codes
- 4 Alternant codes on cyclic cover of \mathbb{P}^1
 - Codes with automorphisms
 - Security
- 5 Alternant codes on the Hermitian curve
 - Invariant code and quotient curve
 - Security analysis

Conclusion

Functions on a curve ${\mathcal X}$

We consider an algebraic curve $\mathcal{X} \subset \mathbb{P}^2(\mathbb{F}_{q^m})$, with affine equation:

$$F(x,y)=0.$$

The function field over \mathbb{F}_{q^m} of \mathcal{X} , denoted by $\mathbb{F}_{q^m}(\mathcal{X})$ is the fraction field of $\mathbb{F}_{q^m}[x, y]/(F)$.

A divisor of \mathcal{X} is a formal sum, with integer coefficients, of points of \mathcal{X} . For $g \in \mathbb{F}_{q^m}(\mathcal{X})$, the principal divisor of g, denoted by (g), is defined as the formal sum of zeros and poles of g, counted with multiplicity.

We denote by $L(G) := \{g \in \mathbb{F}_{q^m}(\mathcal{X}) \mid (g) \ge -G\} \cup \{0\}$, the Riemann-Roch space associated to a divisor G.

AG codes on ${\mathcal X}$

Definition

Let $\mathcal{P} = \{P_1, \dots, P_n\}$ be a set of *n* distinct rational points of \mathcal{X} and *G* be a divisor, then the AG code $C_L(\mathcal{X}, \mathcal{P}, G)$ is defined by:

 $C_L(\mathcal{X}, \mathcal{P}, G) := \{ \mathsf{Ev}_{\mathcal{P}}(f) \mid f \in L(G) \}.$

$$\mathbb{F}_{q^{m}} \qquad C_{L}(\mathcal{X}, \mathcal{P}, G) \xleftarrow{\text{Dual}} C_{L}(\mathcal{X}, \mathcal{P}, G')$$

$$\left| \begin{array}{c} \text{Subfield Subcode} \\ \mathbb{F}_{q} \end{array} \right. \qquad C_{L}(\mathcal{X}, \mathcal{P}, G') \cap \mathbb{F}_{q}^{n} \end{array}$$

 $\mathcal{A}_r(\mathcal{X}, \mathcal{P}, G) := C_L(\mathcal{X}, \mathcal{P}, G') \cap \mathbb{F}_q^n$, where $r = \dim(C_L(\mathcal{X}, \mathcal{P}, G))$.

- McEliece scheme
- Algebraic-geometry codes
- Security of Quasi-cyclic Alternant Codes on P¹
 Induced permutations of Alternant Codes
 Invariant and Folded Codes
 - 4) Alternant codes on cyclic cover of \mathbb{P}^1
 - Codes with automorphisms
 - Security
 - 5 Alternant codes on the Hermitian curve
 - Invariant code and quotient curve
 - Security analysis

AG codes on \mathbb{P}^1

Let $\mathcal{P} = \{P_1, \dots, P_n\}$ be a set of *n* distinct points of $\mathbb{P}^1_{\mathbb{F}_{q^m}}$ and *G* be a divisor, then the AG code $C_L(\mathbb{P}^1, \mathcal{P}, G)$ is defined by:

$$C_L(\mathbb{P}^1,\mathcal{P},G) := \{\mathsf{Ev}_{\mathcal{P}}(f) \mid f \in L(G)\}.$$

AG codes on \mathbb{P}^1

Let $\mathcal{P} = \{P_1, \dots, P_n\}$ be a set of *n* distinct points of $\mathbb{P}^1_{\mathbb{F}_{q^m}}$ and *G* be a divisor, then the AG code $C_L(\mathbb{P}^1, \mathcal{P}, G)$ is defined by:

$$C_L(\mathbb{P}^1,\mathcal{P},G) := \{ \mathsf{Ev}_{\mathcal{P}}(f) \mid f \in L(G) \}.$$

Proposition

The AG code $C_L(\mathbb{P}^1, \mathcal{P}, G)$ is the GRS code :

$$\mathsf{GRS}_k(x,y) := \{ (y_1 f(x_1), \dots, y_n f(x_n)) \mid f \in \mathbb{F}_{q^m}[X]_{< k} \}.$$

where:

$$\begin{array}{l} \rightarrow \ \mathcal{P} := \{(\textbf{x}_i : 1) | \ i \in \{1, \ldots, n\}\}, \\ \rightarrow \ G := (k-1)P_{\infty} - (g), \\ \text{with } g \in \mathbb{F}_{q^m}(\mathbb{P}^1) \text{ a function such that for all } i \in \{1, \ldots, n\}, \\ g(x_i) = y_i \neq 0. \end{array}$$

Automorphim group of \mathbb{P}^1

 $\mathsf{PGL}_2(\mathbb{F}_{q^m})$ is the automorphism group of the projective line \mathbb{P}^1 defined by:

$$\mathsf{PGL}_2(\mathbb{F}_{q^m}) := \Big\{ \begin{array}{cc} \mathbb{P}^1_{\mathbb{F}_{q^m}} & \to & \mathbb{P}^1_{\mathbb{F}_{q^m}} \\ (x:y) & \mapsto & (ax+by:cx+dy) \end{array} \Big| \begin{cases} a,b,c,d \in \mathbb{F}_{q^m}, \\ ad-bc \neq 0 \end{cases} \Big\}.$$

Automorphim group of \mathbb{P}^1

 $\mathsf{PGL}_2(\mathbb{F}_{q^m})$ is the automorphism group of the projective line \mathbb{P}^1 defined by:

$$\mathsf{PGL}_2(\mathbb{F}_{q^m}) := \Big\{ \begin{array}{cc} \mathbb{P}^1_{\mathbb{F}_{q^m}} & \to & \mathbb{P}^1_{\mathbb{F}_{q^m}} \\ (x:y) & \mapsto & (ax+by:cx+dy) \end{array} \Big| \begin{cases} a,b,c,d \in \mathbb{F}_{q^m}, \\ ad-bc \neq 0 \end{cases} \Big\}.$$

Remark

The permutations of $PGL_2(\mathbb{F}_{q^m})$ have also a matrix representation, ie:

$$\forall \sigma \in \mathsf{PGL}_2(\mathbb{F}_{q^m}), \text{ we write } \sigma := \begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{pmatrix}, \text{ with } \mathsf{ad} - \mathsf{bc} \neq 0.$$

Where the elements a, b, c and d are defined up to a multiplication by a nonzero scalar.

Let σ be an automorphism of $\mathbb{P}^{1}_{\mathbb{F}_{q^{m}}}$. For a point $Q \in \mathbb{P}^{1}$, we denote $Orb_{\sigma}(Q) := \{\sigma^{j}(Q) \mid j \in \{1..\ell\}\}$. We define the **support**:

$$\mathcal{P} := \prod_{i=1}^{n/\ell} Orb_{\sigma}(Q_i), \tag{1}$$

where the points $Q_i \in \mathbb{P}^1_{\mathbb{F}_{q^m}}$ are pairwise distinct with trivial stabilizer subgroup.

Let σ be an automorphism of $\mathbb{P}^1_{\mathbb{F}_{q^m}}$. For a point $Q \in \mathbb{P}^1$, we denote $Orb_{\sigma}(Q) := \{\sigma^j(Q) \mid j \in \{1..\ell\}\}$. We define the support:

$$\mathcal{P} := \prod_{i=1}^{n/\ell} Orb_{\sigma}(Q_i), \tag{1}$$

where the points $Q_i \in \mathbb{P}^1_{\mathbb{F}_{q^m}}$ are pairwise distinct with trivial stabilizer subgroup. We define the divisor:

We define the **divisor**:

$$G := t \sum_{j=1}^{\ell} \sigma^j(R), \tag{2}$$

with R a point of $\mathbb{P}^{1}_{\mathbb{F}_{q^{m}}}$, $t \in \mathbb{Z}$ and deg $(G) = \ell t$.

Permutations of $\mathcal{A}_r(\mathbb{P}^1, \mathcal{P}, \mathcal{G})$

The automorphism σ of \mathbb{P}^1 induces a permutation $\tilde{\sigma}$ of $\mathcal{C} = C_L(\mathbb{P}^1, \mathcal{P}, G)$ defined by:

$$\tilde{\sigma} \colon \begin{array}{ccc} \mathcal{C} & \longrightarrow & \mathcal{C} \\ (f(P_1), \dots, f(P_n)) & \longmapsto & (f(\sigma(P_1)), \dots, f(\sigma(P_n))) \cdot \end{array}$$

Then $\tilde{\sigma}$ is also a permutation of $\mathcal{A} := \mathcal{C}^{\perp} \cap \mathbb{F}_{q}^{n}$.

Equivalence classes of $PGL_2(\mathbb{F}_{q^m})$

Lemma

Let $\rho \in \mathsf{PGL}_2(\mathbb{F}_{q^m})$ be an automorphism on \mathbb{P}^1 . Then $\sigma' := \rho \circ \sigma \circ \rho^{-1}$ induces the same permutation on \mathcal{C} as σ .

Equivalence classes of $PGL_2(\mathbb{F}_{q^m})$

Lemma

Let $\rho \in \mathsf{PGL}_2(\mathbb{F}_{q^m})$ be an automorphism on \mathbb{P}^1 . Then $\sigma' := \rho \circ \sigma \circ \rho^{-1}$ induces the same permutation on \mathcal{C} as σ .

Three cases are possible, depending on the eigenvalues of the matrix $M := Mat(\sigma)$:

M ~
$$\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$$
, with $b \in \mathbb{F}_{q^m}$,
M ~ $\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$, with $a \in \mathbb{F}_{q^m}$ or $a \in \mathbb{F}_{q^{2m}} \setminus \mathbb{F}_{q^m}$.

Invariant and folded codes: definitions

Let C be a linear code and $\sigma \in Perm(C)$ of order ℓ . Consider:

$$arphi \colon c \in \mathcal{C} \mapsto \sum_{i=0}^{\ell-1} \sigma^i(c).$$

The *folded* code of \mathcal{C} is defined by

$$\mathsf{Fold}_{\sigma}(\mathcal{C}) := \mathsf{Im}(\varphi)$$

and the invariant code of $\ensuremath{\mathcal{C}}$ is defined by

$$\mathcal{C}^{\sigma} := \ker(\sigma - \mathsf{Id}).$$

16 / 35

Invariant and folded codes: definitions

Let C be a linear code and $\sigma \in Perm(C)$ of order ℓ . Consider:

$$arphi \colon c \in \mathcal{C} \mapsto \sum_{i=0}^{\ell-1} \sigma^i(c).$$

The *folded* code of \mathcal{C} is defined by

$$\mathsf{Fold}_\sigma(\mathcal{C}) := \mathsf{Im}(\varphi)$$

and the invariant code of $\ensuremath{\mathcal{C}}$ is defined by

$$\mathcal{C}^{\sigma} := \ker(\sigma - \mathsf{Id}).$$

Proposition

The codes $\operatorname{Fold}_{\sigma}(\mathcal{C})$ and \mathcal{C}^{σ} are subcodes of \mathcal{C} and:

$$\mathsf{Fold}_{\sigma}(\mathcal{C}) \subseteq \mathcal{C}^{\sigma}.$$

If Char $(\mathbb{F}_{q^m}) \nmid \ell$ then $\operatorname{Fold}_{\sigma}(\mathcal{C}) = \mathcal{C}^{\sigma}$.

Invariant code of $\mathcal{A}_r(\mathbb{P}^1, \mathcal{P}, \mathcal{G})$

If \mathcal{C} is a linear code over \mathbb{F}_{q^m} , σ -invariant then:

$$(\mathcal{C} \cap \mathbb{F}_q^n)^{\sigma} = \{ c \in \mathcal{C} \mid c \in \mathbb{F}_q^n \text{ and } \sigma(c) = c \} = \mathcal{C}^{\sigma} \cap \mathbb{F}_q^n$$

Invariant code of $\mathcal{A}_r(\mathbb{P}^1, \mathcal{P}, G)$

If $\mathcal C$ is a linear code over $\mathbb F_{q^m}$, σ -invariant then:

 $(\mathcal{C} \cap \mathbb{F}_q^n)^\sigma = \{ c \in \mathcal{C} \mid c \in \mathbb{F}_q^n \text{ and } \sigma(c) = c \} = \mathcal{C}^\sigma \cap \mathbb{F}_q^n.$

Theorem

Let $C_L(\mathbb{P}^1, \mathcal{P}, G) \subseteq \mathbb{F}_{q^m}^n$ be a σ -invariant AG code, with $\sigma \in \mathsf{PGL}_2(\mathbb{P}_{\mathbb{F}_{q^m}}^1)$ of order ℓ and \mathcal{P} and G defined as (1) and (2). Then the invariant code $C_L(\mathbb{P}^1, \mathcal{P}, G)^{\sigma}$ is a GRS code of dimension k/ℓ and length n/ℓ .

Corollary

The invariant code $\mathcal{A}_r(\mathbb{P}^1, \mathcal{P}, G)^{\sigma}$ is an alternant code of order r/ℓ and length n/ℓ .

Lemma

Let $c := Ev_{\mathcal{P}}(f) \in C_L(\mathbb{P}^1, \mathcal{P}, G)$ such that $\sigma(c) = c$, then f is σ -invariant, ie: $f \circ \sigma = f$.

Lemma

Let $c := Ev_{\mathcal{P}}(f) \in C_L(\mathbb{P}^1, \mathcal{P}, G)$ such that $\sigma(c) = c$, then f is σ -invariant, ie: $f \circ \sigma = f$.

Let
$$G := t \sum_{j=1}^{\ell} \sigma^j(R)$$
, with R a rational point of $\mathbb{P}^1_{\mathbb{F}_{q^m}}$ and $t \in \mathbb{Z}$. We

denote:

$$\sigma^j(R) := (\gamma_j : \delta_j), \text{ for } j \in \{0, \dots, \ell-1\}.$$

Lemma

With the previous notation, any $f \in L(G)$ can be written as:

$$f(X,Y) = rac{F(X,Y)}{\prod\limits_{j=0}^{\ell-1} (\delta_j X - \gamma_j Y)^t},$$

with $F \in \mathbb{F}_{q^m}[X, Y]$ a homogeneous polynomial of degree $t\ell$.

Case σ trigonalizable over \mathbb{F}_{q^m} :

$$\begin{array}{rcl} \sigma \colon & \mathbb{P}^1_{\mathbb{F}_{q^m}} & \to & \mathbb{P}^1_{\mathbb{F}_{q^m}} \\ & (X:Y) & \mapsto & (X+bY:Y) \end{array}$$

with $b \in \mathbb{F}_{q^m}^*$. Case σ diagonalizable over \mathbb{F}_{q^m} :

$$egin{array}{rll} & & \mathbb{P}^1_{\mathbb{F}_{q^m}} & o & \mathbb{P}^1_{\mathbb{F}_{q^m}} \ & & (X:Y) & \mapsto & (aX:Y), \end{array}$$

with $a \in \mathbb{F}_{q^m}$. Case σ diagonalizable over $\mathbb{F}_{q^{2m}} \setminus \mathbb{F}_{q^m}$:

$$egin{array}{rcl} \sigma\colon&\mathbb{P}^1_{\mathbb{F}_{q^{2m}}}& o&\mathbb{P}^1_{\mathbb{F}_{q^{2m}}}\ (X:Y)&\mapsto&(aX:Y). \end{array}$$

with $a \in \mathbb{F}_{q^{2m}} \setminus \mathbb{F}_{q^m}$.

Case σ trigonalizable over \mathbb{F}_{q^m}

Proposition

If F(X + bY, Y) = F(X, Y), then

$$F(X,Y) = R(X^p - b^{p-1}XY^{p-1},Y^p)$$

with $R \in \mathbb{F}_q[X, Y]$ a homogeneous polynomial of degree t.

Case σ trigonalizable over \mathbb{F}_{q^m}

Proposition

If
$$F(X + bY, Y) = F(X, Y)$$
, then

$$F(X,Y) = R(X^p - b^{p-1}XY^{p-1},Y^p)$$

with $R \in \mathbb{F}_q[X, Y]$ a homogeneous polynomial of degree t.

We denote
$$\sigma^j(P_i) := (\alpha_{i\ell+j} : \beta_{i\ell+j})$$
, for $i \in \{0, \dots, \frac{n}{\ell} - 1\}$, $j \in \{0, \dots, \ell - 1\}$.

Proposition

The code
$$C_L(\mathbb{P}^1, \mathcal{P}, G)^{\sigma}$$
 is the GRS code $C_L(\mathbb{P}^1, \tilde{\mathcal{P}}, \tilde{G})$, with
• $\tilde{P}_i = (\alpha_i^p - b^{p-1}\alpha_i\beta_i^{p-1}: \beta_i^p)$,
• $\tilde{G} = t(\tilde{R})$, where $\tilde{R} = ((-1)^{p-1}\prod_{j=0}^{p-1}\gamma_j: \prod_{j=0}^{p-1}\delta_j)$.

Case σ diagonalizable over \mathbb{F}_{q^m}

Proposition

If F(aX, Y) = F(X, Y), then

$$F(X,Y)=R(X^{\ell},Y^{\ell})$$

with $R \in \mathbb{F}_{q^m}[X, Y]$ an homogeneous polynomial of degree t.

Case σ diagonalizable over \mathbb{F}_{q^m}

Proposition

If F(aX, Y) = F(X, Y), then

$$F(X,Y) = R(X^{\ell},Y^{\ell})$$

with $R \in \mathbb{F}_{q^m}[X, Y]$ an homogeneous polynomial of degree t.

Proposition

The code $(C_L(\mathbb{P}^1, \mathcal{P}, G))^{\sigma}$ is the GRS code $C_L(\mathbb{P}^1, \tilde{\mathcal{P}}, \tilde{G})$, with • $\tilde{P}_i = (\alpha_i^{\ell} : \beta_i^{\ell})$, • $\tilde{G} = t\tilde{R}$, where $\tilde{R} = ((-1)^{\ell-1} \prod_{j=0}^{\ell-1} \gamma_j : \prod_{j=0}^{\ell-1} \delta_j)$.

Invariant and Folded Codes

Case σ diagonalizable over $\mathbb{F}_{q^{2m}} \setminus \mathbb{F}_{q^m}$

Idea

We extend the code C defined on \mathbb{F}_{q^m} to the field $\mathbb{F}_{q^{2m}}$. We consider $\mathcal{C}\otimes \mathbb{F}_{q^{2m}}:= \operatorname{Span}_{\mathbb{F}_{q^{2m}}}(\mathcal{C})$, we have:

$$\mathcal{C} \otimes \mathbb{F}_{q^{2m}} = \{ \mathsf{Ev}_{\mathcal{P}}(f) \mid f \in L_{\mathbb{F}_{q^{2m}}}(G) \}.$$

Invariant and Folded Codes

Case σ diagonalizable over $\mathbb{F}_{q^{2m}} \setminus \mathbb{F}_{q^m}$

Idea

We extend the code C defined on \mathbb{F}_{q^m} to the field $\mathbb{F}_{q^{2m}}$. We consider $\mathcal{C} \otimes \mathbb{F}_{q^{2m}} := \operatorname{Span}_{\mathbb{F}_{-2m}}(\mathcal{C})$, we have:

$$\mathcal{C}\otimes \mathbb{F}_{q^{2m}} = \{\mathsf{Ev}_{\mathcal{P}}(f) \mid f \in L_{\mathbb{F}_{q^{2m}}}(G)\}.$$

Case σ diagonalizable over $\mathbb{F}_{q^{2m}} \setminus \mathbb{F}_{q^m}$

Idea

We extend the code C defined on \mathbb{F}_{q^m} to the field $\mathbb{F}_{q^{2m}}$. We consider $C \otimes \mathbb{F}_{q^{2m}} := \text{Span}_{\mathbb{F}_{q^{2m}}}(C)$, we have:

$$\mathcal{C}\otimes \mathbb{F}_{q^{2m}} = \{\mathsf{Ev}_{\mathcal{P}}(f) \mid f \in L_{\mathbb{F}_{q^{2m}}}(G)\}.$$

Case σ diagonalizable over $\mathbb{F}_{q^{2m}} \setminus \mathbb{F}_{q^m}$

$$ightarrow \mathcal{C}\otimes \mathbb{F}_{q^{2m}}$$
 has a basis in $\mathbb{F}_{q^m}^n.$

 \rightarrow Here $p \nmid \ell$ then $\operatorname{Fold}_{\sigma}(\mathcal{C}) = \mathcal{C}^{\sigma}$. So $(\mathcal{C} \otimes \mathbb{F}_{q^{2m}})^{\sigma}$ has also a basis in $\mathbb{F}_{q^m}^n$.

Case σ diagonalizable over $\mathbb{F}_{q^{2m}} \setminus \mathbb{F}_{q^m}$

$$\rightarrow \mathcal{C}\otimes \mathbb{F}_{q^{2m}}$$
 has a basis in $\mathbb{F}_{q^m}^n$.

 \rightarrow Here $p \nmid \ell$ then $\operatorname{Fold}_{\sigma}(\mathcal{C}) = \mathcal{C}^{\sigma}$. So $(\mathcal{C} \otimes \mathbb{F}_{q^{2m}})^{\sigma}$ has also a basis in $\mathbb{F}_{q^m}^n$.

- McEliece scheme
- Algebraic-geometry codes
- 3 Security of Quasi-cyclic Alternant Codes on P¹
 Induced permutations of Alternant Codes
 Invariant and Folded Codes
- Alternant codes on cyclic cover of P¹
 Codes with automorphisms
 - Security
- Alternant codes on the Hermitian curve
 - Invariant code and quotient curve
 - Security analysis

Cyclic cover of \mathbb{P}^1

For a point $Q \in \mathcal{X}$, we denote $Orb_{\sigma}(Q) := \{\sigma^{j}(Q) \mid j \in \{1..\ell\}\}$. We define the **support**:

$$\mathcal{P} := \prod_{i=1}^{n/\ell} Orb_{\sigma}(Q_i), \tag{3}$$

where the points $Q_i \in \mathcal{X}$ are pairwise distinct with trivial stabilizer subgroup.

For a point $Q \in \mathcal{X}$, we denote $Orb_{\sigma}(Q) := \{\sigma^{j}(Q) \mid j \in \{1..\ell\}\}$. We define the support:

$$\mathcal{P} := \prod_{i=1}^{n/\ell} Orb_{\sigma}(Q_i), \tag{3}$$

where the points $Q_i \in \mathcal{X}$ are pairwise distinct with trivial stabilizer subgroup.

We define the **divisor**:

$$G := s P_{\infty}, \tag{4}$$

with $s \in \mathbb{N}^*$, and P_{∞} the point at infinity of the curve \mathcal{X} .

For a point $Q \in \mathcal{X}$, we denote $Orb_{\sigma}(Q) := \{\sigma^{j}(Q) \mid j \in \{1..\ell\}\}$. We define the **support**:

$$\mathcal{P} := \prod_{i=1}^{n/\ell} Orb_{\sigma}(Q_i), \tag{3}$$

where the points $Q_i \in \mathcal{X}$ are pairwise distinct with trivial stabilizer subgroup.

We define the **divisor**:

$$G := s P_{\infty}, \tag{4}$$

with $s \in \mathbb{N}^*$, and P_∞ the point at infinity of the curve \mathcal{X} .

σ -invariant code

The automorphism σ induces a permutation on $\mathcal{C} = \mathcal{C}_L(\mathcal{X}, \mathcal{P}, \mathcal{G})$. The subfield subcode $\mathcal{A} := \mathcal{C} \cap \mathbb{F}_q^n$, is also σ -invariant.

- McEliece scheme
- Algebraic-geometry codes
- 3 Security of Quasi-cyclic Alternant Codes on P¹
 Induced permutations of Alternant Codes
 Invariant and Folded Codes
- $\overset{4}{}$ Alternant codes on cyclic cover of \mathbb{P}^1
 - Codes with automorphisms
 - Security
- Alternant codes on the Hermitian curve
 Invariant code and quotient curve
 - Security analysis

Invariant code of σ -invariant AG codes

Lemma

Let $c := Ev_{\mathcal{P}}(f) \in C_L(\mathcal{X}, \mathcal{P}, G)$, with deg(G) < n, such that $\sigma(c) = c$, then f is σ -invariant, ie: $f \circ \sigma = f$.

 $\sigma \in \operatorname{Aut}(\mathcal{X})$ of order ℓ .

Theorem

Let \mathcal{P} be a σ -invariant set of rational points of \mathcal{X} and G be a σ -invariant divisor of \mathcal{X} , then:

 $Inv_{\sigma}(C_{L}(\mathcal{X}, \mathcal{P}, G)) = C_{L}(\mathcal{X}/\langle \sigma \rangle, \tilde{\mathcal{P}}, \tilde{G})$ where $\tilde{\mathcal{P}}$ is a set of points of $\mathcal{X}/\langle \sigma \rangle$ and

where \mathcal{P} is a set of points of $\mathcal{X}/\langle \sigma \rangle$ and \tilde{G} is a divisor of $\mathcal{X}/\langle \sigma \rangle$.

Quotient curves of ${\cal H}$

Let $\mathbb{F}_{q_0^2}$ be a finite field and consider the Hermitian curve, denoted by $\mathcal H$ of equation:

$$y^{q_0} + y = x^{q_0+1}$$

Quotient curves of ${\cal H}$

Let $\mathbb{F}_{q_0^2}$ be a finite field and consider the Hermitian curve, denoted by \mathcal{H} of equation:

$$y^{q_0} + y = x^{q_0+1}.$$

We denote $A(P_{\infty}) := \{ \sigma \in Aut(\mathcal{H}) \mid \sigma(P_{\infty}) = P_{\infty} \}$ then $\sigma \in A(P_{\infty})$ is described by:

$$\begin{cases} \sigma(x) = ax + b, \\ \sigma(y) = a^{q_0 + 1}y + ab^{q_0}x + c, \end{cases}$$

with $a\in \mathbb{F}_{q_0^2}^*$, $b\in \mathbb{F}_{q_0^2}$ and $b^{q_0+1}=c^{q_0}+c.$

Quotient curves of $\mathcal H$

Let $\mathbb{F}_{q_0^2}$ be a finite field and consider the Hermitian curve, denoted by \mathcal{H} of equation:

$$y^{q_0} + y = x^{q_0+1}.$$

We denote $A(P_{\infty}) := \{ \sigma \in Aut(\mathcal{H}) \mid \sigma(P_{\infty}) = P_{\infty} \}$ then $\sigma \in A(P_{\infty})$ is described by:

$$\begin{cases} \sigma(x) = ax + b, \\ \sigma(y) = a^{q_0 + 1}y + ab^{q_0}x + c, \end{cases}$$

with $a\in \mathbb{F}_{q_0^2}^*,\ b\in \mathbb{F}_{q_0^2}$ and $b^{q_0+1}=c^{q_0}+c.$

If we choose $a \neq 1$ such that $a^{q_0-1} = 1$, then $\operatorname{ord}(\sigma) = \operatorname{ord}(a)$ and the genus of the quotient curve is ([Bassa, Ma, Xing, Yeo, 2013]):

$$g(\mathcal{H}/\langle\sigma
angle) = rac{q_0-1}{2}.$$

Security of the invariant code

- The invariant code of an alternant AG code is an alternant AG code
- No specific attacks known for alternant AG codes

Security of the invariant code

- The invariant code of an alternant AG code is an alternant AG code
- No specific attacks known for alternant AG codes

Exhaustive search on the divisor:

We say that C_1 and C_2 are **diagonal-equivalent**, and we note $C_1 \sim C_2$, if there exist $\lambda_1, \ldots, \lambda_n$ nonzero elements such that:

$$\mathcal{C}_2 = \{ (\lambda_1 c_1, \ldots, \lambda_n c_n) \mid (c_1, \ldots, c_n) \in \mathcal{C}_1 \}.$$

Security of the invariant code

- The invariant code of an alternant AG code is an alternant AG code
- No specific attacks known for alternant AG codes

Exhaustive search on the divisor:

We say that C_1 and C_2 are **diagonal-equivalent**, and we note $C_1 \sim C_2$, if there exist $\lambda_1, \ldots, \lambda_n$ nonzero elements such that:

$$\mathcal{C}_2 = \{ (\lambda_1 c_1, \ldots, \lambda_n c_n) \mid (c_1, \ldots, c_n) \in \mathcal{C}_1 \}.$$

Theorem ([Munuera, Pellikaan, 1993])

If \mathcal{P} is a set of n > 2g - 2 rational points of \mathcal{X} , where g is the genus of \mathcal{X} , and G and H are two divisors of the same degree 2g - 1 < t < n - 1, then:

$$C_L(\mathcal{X},\mathcal{P},G) \sim C_L(\mathcal{X},\mathcal{P},H) \Leftrightarrow G \sim H.$$

Number of non equivalent AG codes

We denote $\text{Div}^t(\mathcal{X})$ the group of divisors on \mathcal{X} of degree t and $P(\mathcal{X})$ the group of principal divisors on \mathcal{X} . Then we define the quotient group $\text{Pic}^0(\mathcal{X}) := \text{Div}^0(\mathcal{X})/P(\mathcal{X})$.

For a fix dimension, the number of non equivalent AG codes on ${\mathcal X}$ with the support ${\mathcal P}$ is:

 $#AGcode(\mathcal{X}, \mathcal{P}) = #Pic^{0}(\mathcal{X}).$

Number of non equivalent AG codes

We denote $\mathsf{Div}^t(\mathcal{X})$ the group of divisors on \mathcal{X} of degree t and $\mathsf{P}(\mathcal{X})$ the group of principal divisors on \mathcal{X} . Then we define the quotient group $\mathsf{Pic}^0(\mathcal{X}) := \mathsf{Div}^0(\mathcal{X})/\mathsf{P}(\mathcal{X}).$

For a fix dimension, the number of non equivalent AG codes on ${\cal X}$ with the support ${\cal P}$ is:

$$\#\mathsf{AGcode}(\mathcal{X},\mathcal{P}) = \#\mathsf{Pic}^0(\mathcal{X}).$$

For the curve $\mathcal{H}/\langle \sigma \rangle$ on $\mathbb{F}_{q_0^2}$:

•
$$\#\operatorname{Pic}^{0}(\mathcal{H}/\langle\sigma\rangle) \approx q_{0}^{2g}$$

• $g = \frac{q_{0}-1}{2}$
• $n \approx q_{0}^{3}$

$$\#\mathsf{AGcode}(\mathcal{H},\mathcal{P})\approx (\sqrt[3]{n})^{\sqrt[3]{n}}$$

Number of non equivalent alternant AG codes

We look at non equivalent alternant of AG codes (on \mathbb{F}_q):

$$\#\mathcal{A}(\mathcal{X},\mathcal{P}) \leq (q^{m(n-1)}-q^{n-1})\#\mathsf{Pic}^0(\mathcal{X}).$$

Examples of parameters:

q_0	n	k	ISD	$\#Pic^{0}(\mathcal{H}/\sigma)$	$\#\mathcal{A}(\mathcal{H}/\sigma,\mathcal{P})$	Key size
11	1100	729	118	2 ³⁴	2 ⁷⁶³⁴	163 Kbits
16	1950	1469	116	2 ⁶⁰	_	250 Kbits

- 1 McEliece scheme
- Algebraic-geometry codes
- 3 Security of Quasi-cyclic Alternant Codes on P¹
 Induced permutations of Alternant Codes
 Invariant and Folded Codes
- - Codes with automorphisms
 - Security
- 5) Alternant codes on the Hermitian curve
 - Invariant code and quotient curve
 - Security analysis

Results:

- **1** Quasi-cyclic codes on \mathbb{P}^1
 - The invariant code of a quasi-cyclic GRS code is a GRS code.
 - The security of alternant codes with induced permutation from the projective linear group, is reduced to the security of the invariant code which is an alternant code.
- 2 Codes on cyclic cover of \mathbb{P}^1
 - We can recover the invariant code.
 - Thanks to the invariant code we can recover the support and the curve.

35 / 35

Results:

- **1** Quasi-cyclic codes on \mathbb{P}^1
 - The invariant code of a quasi-cyclic GRS code is a GRS code.
 - The security of alternant codes with induced permutation from the projective linear group, is reduced to the security of the invariant code which is an alternant code.
- 2 Codes on cyclic cover of \mathbb{P}^1
 - We can recover the invariant code.
 - Thanks to the invariant code we can recover the support and the curve.
- Odes on Hermitian curve
 - Automorphism σ such that the quotient curve $\mathcal{H}/\langle\sigma\rangle$ is not \mathbb{P}^1
 - $\bullet\,$ Maximal curve $\rightarrow\,$ good parameters for the code

Results:

- $\textcircled{0} Quasi-cyclic codes on \mathbb{P}^1$
 - The invariant code of a quasi-cyclic GRS code is a GRS code.
 - The security of alternant codes with induced permutation from the projective linear group, is reduced to the security of the invariant code which is an alternant code.
- 2 Codes on cyclic cover of \mathbb{P}^1
 - We can recover the invariant code.
 - Thanks to the invariant code we can recover the support and the curve.
- Odes on Hermitian curve
 - $\bullet\,$ Automorphism σ such that the quotient curve $\mathcal{H}/\langle\sigma\rangle$ is not \mathbb{P}^1
 - $\bullet\,$ Maximal curve \rightarrow good parameters for the code

Perspectives:

- Codes on cyclic cover of the Hermitian curve
- Odes on cyclic cover of random plane curves

Thank you!