Faster fully homomorphic encryption: Bootstrapping in

less than 0.1 seconds

I. Chillotti' N. Gama®! M. Georgieva® M. Izabachéne*

UNIVERSITE DE \
1 VERSAILLES @S [’! mto 4 E
ST-QUENTIN-EN-YVELINES

unlverslte PARIS-SACLAY Hr D Lr \‘

Séminaire GTBAC Télécom ParisTech
April 6, 2017

1/43

Table of contents

@ Fully Homomorphic Encryption
o Applications

Q TLWE
o The real torus
o LWE and TLWE

© TGSW and the external product
o Encryption and Gadget
o TLWE and TGSW

Q@ Faster Bootstrapping
o Gate bootstrapping

o Security analysis

@ Conclusion

2/43

" contents

@ Fully Homomorphic Encryption
o Applications

3/43

Homomorphic Encr

IDEA: perform computations on encrypted data, without decrypting it.

bl’b2 € {0’ 1}

b [Bnon ba | =
b1 o 2| =

4/43

Homomorphic Encryption

More generally

= Prom(be (b)) = (ol b))

where by,...,b, € {0,1} and ¢ is a boolean circuit.

5/43

Homomorphic Encry

An Homomorphic Encryption scheme is composed by 4 algorithms:

6/43

Homomorphic Encry

An Homomorphic Encryption scheme is composed by 4 algorithms:

o Key Generation KeyGen :

A +— (sk, pk)

6/43

Homomorphic Encr

An Homomorphic Encryption scheme is composed by 4 algorithms:

o Key Generation KeyGen :

A +— (sk, pk)

o Decryption Dec (deterministic) :

(c,sk) — m

6/43

Homomorphic Encr

An Homomorphic Encryption scheme is composed by 4 algorithms:
o Key Generation KeyGen :

A +— (sk, pk)

o Decryption Dec (deterministic) :

(c,sk) — m

o Encryption Enc (randomized) :
(m, pk) — ¢

such that Dec(c, sk) =m

6 /43

Homomorphic Encryp

o Hvaluation Eval (possibly randomized) :
(p,¢1y...ck) —> ¢

such that Dec(c, sk) = p(mq,...,my)

— 1 |[——

7/43

Homomorphic Encryption

o Hvaluation Eval (possibly randomized) :
(p,¢1y...ck) —> ¢

such that Dec(c, sk) = p(mq,...,my)

— (1 [—

\
o

e(ma,...,mg)

A scheme that can homomorphically evaluate all functions/circuits is said
Fully Homomorphic (FHE).

7/43

8/43

Statistic computations on sensitive data

~d\ |

8/43

Applications

Statistic computations on sensitive data

Secure multiparty computation

[

8/43

Applications

Statistic computations on sensitive data
Secure multiparty computation

Electronic voting

VOTE

8 /43

Applications

Statistic computations on sensitive data
Secure multiparty computation

Electronic voting

Cloud computing

" VOTE

8 /43

Applications

Statistic computations on sensitive data
Secure multiparty computation

Electronic voting

Cloud computing

VOTE

8 /43

A world full of noise...

anim.html

0/43

Bootstrapping now

:

ciphertext

secret key

bits

bits

Decryption
circuit
(public)

—D

message

10 /43

Bootstrapping now

ciphertext
bits o,
Decryption (: :)
circuit
(public) message
o encrypted
% bits o
secret key (:)
encrypted :

10 /43

Bootstrapping is the most expensive part of the entire
homomorphic procedure

o Original idea by Gentry [Gen09]

o Last years: work to reduce the execution time and memory consuming

...but a lot have to be done!

11 /43

Table of contents

Q TLWE
o The real torus
o LWE and TLWE

12 /43

o LWE = Learning With Errors [Reg05]
o Ring-LWE [LPR10]

13 /43

o LWE = Learning With Errors [Reg05]
o Ring-LWE [LPR10]

LWE: definition similar to [BLPRS13],[CS15],[CGGI16]
o TLWE: generalized definition similar to [BGV12]

13 /43

The real torus T = R/Z =R mod 1

(T, +,-) is a Z-module (- : Z x T — T a valid external product)

14 /43

The real torus T = R/Z =R mod 1

(T, +,-) is a Z-module (- : Z x T — T a valid external product)
v It is a group: z +y mod 1 and —z mod 1

14 /43

The real torus T = R/Z =R mod 1

(T, +,-) is a Z-module (- : Z x T — T a valid external product)
v It is a group: z +y mod 1 and —z mod 1
v It is a Z-module: 0 - % = 0 is defined!

14 /43

The real torus T = R/Z =R mod 1

(T, +,-) is a Z-module (- : Z x T — T a valid external product)
v It is a group: z +y mod 1 and —z mod 1
v It is a Z-module: 0 - % = 0 is defined!
X It is not a Ring: 0 x % is not defined!

14 /43

The real torus T =R/Z =R mod 1

(T, +,-) is a Z-module (- : Z x T — T a valid external product)
v It is a group: z +y mod 1 and —z mod 1
¢ It is a Z-module: 0 - £ = 0 is defined!
X It is not a Ring: 0 x % is not defined!

Vectors/matrices

By extension, (T™, +,.) is a Z-module
2 0.252 0.672
4 .
N } [0.231 0.991}
2

1
3
J
1 -
A 0.252 0.672
° 7<[3 -2 4%{;’ . D‘[ozgl 0.991]

Torus polynomials T y[X]

(Tn[X],+,-) is a R-module
o Here, R = Z[X]/(XN +1)
o And Ty[X] = T[X] mod (XN + 1)

15 /43

Torus polynomials T [X]

(Tn[X],+,-) is a R-module
o Here, R = Z[X]/(XN +1)
o And Ty[X] = T[X] mod (XV +1)

Examples
o (1+2X)-(2+%X)

Torus polynomials T [X]

(Tn[X],+,-) is a R-module
o Here, R = Z[X]/(XN +1)
o And Ty[X] = T[X] mod (XV +1)

Examples

o (1+2X)-(3+2X)=(+ZX) mod (X?+1) mod 1

Torus polynomials T [X]

(Tn[X],+,-) is a R-module
o Here, R = Z[X]/(XN +1)
o And Ty[X] = T[X] mod (XV +1)

Examples
o (1+2X)-(3+2X)=(+ZX) mod (X?+1) mod 1
o Decompose (3 + £X) over [3, 1, 5] with small coefs

Torus polynomials T [X]

(Tn[X],+,-) is a R-module
o Here, R = Z[X]/(XN +1)
o And Ty[X] = T[X] mod (XV +1)

Examples

mod (X?+1) mod 1
| with small coefs
A+ Xx)-4

LWE symmetric encryption

16 /43

LWE symmetric encryption

Example: M = {0,1/3,2/3} mod 1
pw=1/3mod 1 € M

16 /43

LWE symmetric encryption

()
Example: M = {0,1/3,2/3} mod 1
w=1/3 mod 1 € M

@ Choose ¢ = i + Gaussian Error

16 /43

LWE symmetric encryption

(a,)
Example: M = {0,1/3,2/3} mod 1
w=1/3 mod 1 € M

@ Choose ¢ = + Gaussian Error

@ Choose a random mask a € T"™

16 /43

LWE symmetric encryption

secret key: s € {0,1}"

b=s-a+¢ :

(a,) (a,b)
Example: M = {0,1/3,2/3} mod 1
w=1/3 mod 1 € M

@ Choose ¢ = + Gaussian Error

@ Choose a random mask a € T"
@ Return the locked representation (a, b)

LWE symmetric encryption

secret key: s € {0,1}"
]

(a,b)

LWE Decryption

16 /43

LWE symmetric encryption

secret key: s € {0,1}"

p=b—s-a

(a,) (a,b)

LWE Decryption

@ Unlock the representation (a,)

LWE symmetric encryption

secret key: s € {0,1}"

1/3
p=b—s-a @

(a,) (a,b)

LWE Decryption

@ Unlock the representation (a, ¢)
© Round ¢ to the nearest message p € M

LWE symmetric encryption

secret key: s € {0,1}"

b=s-a+¢
p=b—s-a @

16 /43

LWE symmetric encryption

secret key: s € {0,1}"
b=s-a+y

p=b—s-a

Trivial LWE samples

o LWE samples with mask a = 0 are trivial.

o They never occur in general

...but are still worth mentionning!

16 /43

Homomorphic Properties

@ Q- e

b b B =g bty

17 /43

Homomorphic Properties

17 /43

Homomorphic Properties

" a a
b 4 VoW =x-bty-l
o
ORRONG
"2 ¢’ " Y =zooty- ¥

w=E(p) ' I W=z opty-p

17 /43

Homomorphic Properties

a’=z-a+y-a

V' =x-b+y- -

o'=x-0+y- ¢

W=z opty-p

12

17 /43

Homomorphic Properties

" a a
x°@ —i—y' = a’=z-a+ty-a
b 4 VoW =x-bty-l
o
Q6 C
"2 ¢’ " Y =zooty- ¥

w=E(p) ' I W=z opty-p

! 1 12 /

a = stdev(p) Q@ Q a? = 22a? + y2a

Q: The only proba. space where this intuitive picture makes sense!

17 /43

o LWE = Learning With Errors [Reg05]
o Ring-LWE [LPR10]

18 /43

o LWE = Learning With Errors [Reg05]
o Ring-LWE [LPR10]

LWE: definition similar to [BLPRS13],[CS15],[CGGI16]
o TLWE: generalized definition similar to [BGV12]

18 /43

TLWE Encryption

s 1 TH[X]FFL s Ty X]
(a,b) > b—s-a

H

TN[X]k+1

TLWE
Samples

19 /43

TLWE Encryption

os: TXPFT = TX] N
(a,b) > b—s-a Tm s

3 U
Hk oM ‘ég
Ty X5+ {(0,10)}
TLWE Trivial
Samples samples

10/43

TLWE Encryption

os: TXPFT = TX] N
(a,b) > b—s-a Tm s

3 B
H | r EB oM ‘X%/Og
T, [X]H+ ker s {(0,)}
TLWE Homogeneous Trivial
Samples samples samples

19 /43

TLWE Encryption
ps: TNXM e X N
(a,b) > b—s-a Tm s

Y
H F m‘t E :
| = EB ‘x%/o‘g
TN[X]k+ ker {(07 M)}

TLWE Homogeneous Trivial
Samples samples samples
c=z+(0,p) < o u

encrypt: add z € ker g

c® > p=yps(c)
decrypt: apply ¢g

19 /43

TLWE Encryption

os: TXPFT = TX] N
(a,b) > b—s-a Tm s
T

H

T X]HH [{(0, 1)}

TLWE Homogeneous Trivial

Samples samples samples
(Approz of
R-module)

c=z+(0,p) << encrypt: add approx(z € ker @) O n
c® > approx(u)

decrypt: apply ps... = ¢s(c)

19 /43

TLWE Encryption

yad Cxzalol] RN

How to recover u exactly?]“‘PS

Option 1: 1= E(ps(c))
(in the relevant proba. space)

The Q-space logic

Option 2: p = round(ys(c))
On a given finite message space M

c— The logic of the decryption algorithm

c® > approx(u)
decrypt: apply ps... = ¢s(c)

19 /43

Table of contents

© TGSW and the external product
o Encryption and Gadget
o TLWE and TGSW

20 /43

We want FHE!

What is still missing to have Fully Homomorphic Encryption?

21 /43

We want FHE!

What is still missing to have Fully Homomorphic Encryption?

o GSW [GSW13] is a FHE scheme based on LWE

o Relies on a gadget decomposition function

21 /43

We want FHE!

What is still missing to have Fully Homomorphic Encryption?

o GSW [GSW13] is a FHE scheme based on LWE

o Relies on a gadget decomposition function

o Abstraction of [GSW13] by [GINX16]
e TGSW: "GSW" on T

21 /43

TGSW

The gadget
VI G OISR RN Al | cenerating family of H
h € My 41 (Tn[X])
/2 |...] 0O o h is block diagonal
/22 ...] 0 super-increasing
. : o We are able to decompose
12¢0...] o elements in the sub-module H
h— : . o The coefficients in the
(') : 1‘2 decomposition are small
0 o 1 // 92 o Approximated decomposition (up

to some precision parameters)

: , o Improve time and memory
0 | 1/2 requirements for a small amount
of additional noise

22 /43

TGSW

Parameters
o Let H=Tx[X]* x Ty[X]
o h=(hy,...,h) € HY a super-increasing generating family of H
o Decy the "small" decomposition function from H — R¢
(R =Z[X]/(XN +1)) such that

Decy(z)-h=xforallz € H

o I' = ker,,_, denotes homogeneous TLWE samples

23 /43

TGSW

Parameters
o Let H=Tx[X]* x Ty[X]
o h=(hy,...,h) € HY a super-increasing generating family of H
o Decy, the "small" decomposition function from H — RY
(R =Z[X]/(XN +1)) such that
Decy(z)-h=xforallz € H

o I' = ker,,_, denotes homogeneous TLWE samples

C:Z—l-u-hwhereZEFe, l

%)
s
)

TGSW

Parameters
o Let H=Tx[X]* x Ty[X]
o h=(hy,...,h) € HY a super-increasing generating family of H
o Decy, the "small" decomposition function from H — RY
(R =Z[X]/(XN +1)) such that
Decy(z)-h=xforallz € H

o I' = ker,,_, denotes homogeneous TLWE samples

C’zZ—l—u-hwhereZEFe,

Homomorphic operations:
Let C1 =214+ p;-hand Cy =Z5 4+ ps - h
o Linear combinations: §;C; + d2C5 encrypts 011 + d2u2 (6; € R)

o Multiplication : Decy,(Cy) - C encrypts pijia

%)
o
)

Toy example (without noise)

1.7/7,

100

=[=] o =

Parameters
o H= 177 =37/7.& 5=7/7 (is a Z-module)
o h= (s, 2, 5 10 20° 50
100° 100’ 100’ 100° 100’ 100
o Decy: decomposition in Euro coins
o I'=17/Z C H: modulo of the code

24 /43

Toy example (without noise)

1.7/7,

5™
= (=] @ (=
Parameters

H={57)7=7/)7& +7/7 (is a Z-module)
h= (s, 2,5 10 2’ 50,

100

Decy,: decomposition in Euro coins
I'=17/7Z c H: modulo of the code

24 /43

Toy example (without noise)

Multiplication:
010110 73/100
020100 21/100
000101 40/100
Deen(Ch)-Co=11 o g 1 ¢ 2 o 5/100
0000 21 35/100
000000 50/100

(61 47 55 10 20 O
~ \ 100’ 100" 100’ 100’ 100" 100

Verification: does encode 7 - (—2) =11 mod 25

6L 47 55 30 20 0 (210002)
100 100 100 1007 100" 100) \44°4° 4’4’4

25 /43

Toy example (without noise)

Multiplication:
010110 73/100
020100 21/100
000101 40/100
Deen(Ch)-Co=11 o g 1 ¢ 2 o 5/100
0000 21 35/100
000000 50/100

_ (61 47 55 10 20 O
~ \ 1007 100" 100”100’ 100" 100

Verification: does encode 7 - (—2) =11 mod 25

6147 55 30 20 0 (210002)
1007 100° 100”100”100 100 /)

25 /43

TLWE and TGSW

26 /43

TLWE and TGSW

TGSW

TLWE and TGSW

(#) T

()= C=a § @D

TLWE

Ve € R VA € RWb € T[X]:
e TGSW(A) is a TLWE of A - ¢pg(e - h)

TGSW

26 /43

TLWE and TGSW

(7= =2 @ O

TLWE

Ve € MY VA € R Vb € Ty[X]:
e TGSW(A) is a TLWE of A - ¢pg(e - h)
= Decompy, (TLWE(b)) - TGSW(A) is a TLWE of A - b

TGSW

26 /43

Toy example (WITH noise)

Parameters
o H=1:7/2=37/7& £7/Z (is a Z-module)

Oh:(l 2 5 10 20 50)

100° 100’ 100’ 100 100’ 100
o Decy: decomposition in Euro coins

o I'=17/7Z C H: modulo of the code

c,— (2L 16 63 46 89 0

'~ \(100’ 100" 100’ 100’ 100’ 100

[(10 1322 1 2 3 1 1 1

=l -.-, -, =, =, = _ = — ~h
_(4’4’4’4’4’4)+(100’ 100’ 100° 100’ 100’10()”+7
L 28 &7 & a8

100’ 100’ 100° 100’ 100’ 100

_[(3121382y (2 2 3 0 2 2\ ,,
“\rrrre: 100”100’ 100° 100" 100 100

27 /43

Cy =

Toy example (WITH noise)

Parameters
o H=1:7/2=37/7& £7/Z (is a Z-module)

Oh:(l 2 5 10 20 50)

100° 100’ 100’ 100 100’ 100
o Decy: decomposition in Euro coins

o I'=17/7Z C H: modulo of the code

c— (2L 16 63 46 89 00

'~ \ 100’ 100” 100’ 100’ 100’ 100

[(1 01322 12 3 1 1 1

= ||| === =0 =0 = o 2 2 ——2 o2 ——> h
_(4’4’4’4’4’4)+(100 100’ 100" 100’ 100,100)}+7
L 28 &7 & a8

100’ 100’ 100° 100’ 100’ 100

_[(3121382y (2 2 3 0 2 2\ ,,
“\rrrre: 100”100’ 100° 100" 100 100

27 /43

Ce =

Toy example (WITH noise)

Multiplication:

71/100
23/100
37/100
5/100
33/100
48/100

Dech(01,1)~02:[1 0 0 1 1 O]

9
Dech(Clyl) . CQ = <m>

Verification: does encode 7-(—2) =11 mod 25
9 0 2
() = [(3) - () + o

28 /43

External product (found independently by [BP16])
L: TGSW xTIWE — TLWE
(A, b) — Ab = DeCh,lg,e(b) -A

(s o) ¥ A - pn

where Decy, g, is the approximate gadget decomposition

20 /43

External product (found independently by [BP16])
L: TGSW xTIWE — TLWE
(A, b) — Ab = Dech,@e(b) -A

(s o) ¥ A - pn

where Decy, g, is the approximate gadget decomposition

Internal product (classical)

X: TGSW x TGSW — TGSW
Alb;
(A,B)— AR B = :
AU b1y

(pa, pB) — pa - pp

20 /43

2\
T-GSW
nA .
° BaFo o wE
Itb J lleally m + O(na)
T-LWE
o

[Er(ATIb)|[, <

ONBA+ lally 1+ ENYe + | lall mo |

where 8 and € are the parameters used in the decomposition Decy ,(b).

30 /43

" contents

Q@ Faster Bootstrapping
o Gate bootstrapping
o Security analysis

31 /43

Faster bootstrapping

We applied our result to the fast bootstrapping proposed by Ducas and
Micciancio (Eurocrypt 2015)

[DM15]: homomorphic NAND gate with fast bootstrapping in ~ 0.69 seconds

32 /43

Faster bootstrapping

We applied our result to the fast bootstrapping proposed by Ducas and
Micciancio (Eurocrypt 2015)

[DM15]: homomorphic NAND gate with fast bootstrapping in ~ 0.69 seconds

We replaced all the internal products in the bootstrapping procedure with the
external one.

Result: (with further optimizations) we had a speed-up of a factor ~ 12
(bootstrapping in ~ 0.052 seconds)

32 /43

Bootstrapping

3
4

N[

=

33/43

Bootstrapping

N[

IS
IS

33/43

Bootstrapping

[Gentry09]-style bootstrap

|

PN

33 /43

Bootstrapping

[Gentry09]-style bootstrap

|

Z '2\
J J

/
\

33 /43

Bootstrapping

|

[DM15]-style bootstrap

\

Jﬁ:/ - \
N

33 /43

Gate Bootstrapping

false := LWE(—%), noise< %

N |—=

=l
=

o=
o=

34 /43

Gate Bootstrapping

N |—=

true := LWE(+3), noise < 1%

=l
=

o=

34 /43

Gate Bootstrapping

NN

=l
=

o=
o=

34 /43

Gate Bootstrapping

NAND(¢

e
N~ /4 N\

N |—=

2
¥4

=

34 /43

Gate Bootstrapping

[DM15/BR15]-(revisited)

% Vi1
Y
"\‘\ Vi }/J
3 1
1 1 [...]

Van-—1

34 /43

trapping Algorithm (animation)

Bootstrapping algorithm of (a, b)

@ Start from (a trivial) TLWE(vp + v1 X + -+ + oy XV -1)e
@ Rotate it by p = —ps(a, b) positions

@ Extract the constant term (which encrypts vp,)

N coefs mod XN + 1 can be viewed as 2N coefs mod X2V — 1 s.t. UNti = —U;

35 /43

trapping Algorithm (animation)

Bootstrapping algorithm of (a, b)

@ Start from (a trivial) TLWE(vp + v1 X + -+ + oy XV -1)e
@ Rotate it by p = —ps(a, b) positions

@ Extract the constant term (which encrypts vp,)

N coefs mod XN + 1 can be viewed as 2N coefs mod X2V — 1 s.t. UNti = —U;

35 /43

Bootstrapping Algorithm (animation)

Bootstrapping algorithm of (a, b)
@ Start from (a trivial) TLWE(vp + v1 X + -+ + oy XV -1)e
@ Rotate it by p = —ps(a, b) positions

@ Extract the constant term (which encrypts vp,)

N coefs mod XN + 1 can be viewed as 2N coefs mod X2V — 1 s.t. UNti = —U;

Rotate by p positions the coefficients ¢ € TLWE

Bootstrapping Algorithm (animation)

Bootstrapping algorithm of (a, b)
@ Start from (a trivial) TLWE(vp + v1 X + -+ + oy XV -1)e
@ Rotate it by p = —ps(a, b) positions

@ Extract the constant term (which encrypts vp,)

N coefs mod XN + 1 can be viewed as 2N coefs mod X2V — 1 s.t. UNti = —U;

Rotate by p positions the coefficients ¢ € TLWE

e (XP?.c) when p is known

Bootstrapping Algorithm (animation)

apping algorithm of (a, b)
@ Start from (a trivial) TLWE(vp + v1 X + -+ + oy XV -1)e
@ Rotate it by p = —ps(a, b) positions

@ Extract the constant term (which encrypts vp,)

N coefs mod XN + 1 can be viewed as 2N coefs mod X2V — 1 s.t. UNti = —U;

Rotate by p positions the coefficients ¢ € TLWE

e (XP?.c) when p is known
o (TGSW(XP) [c) when p is unknown

Bootstrapping Algorithm (animation)

Bootstrapping algorithm of (a, b)
@ Start from (a trivial) TLWE(vp + v1 X + -+ + oy XV -1)e
@ Rotate it by p = —ps(a, b) positions

@ Extract the constant term (which encrypts vp,)

N coefs mod XN + 1 can be viewed as 2N coefs mod X2V — 1 s.t. UNti = —U;

Rotate by p positions the coefficients ¢ € TLWE

e (XP?-c) when p is known
o (TGSW(XP?)[c) when p is unknown

How to rotate by —¢ (a,b) = —b+ > | a;8;?

vy
1y o+

Bootstrapping Algorithm (animation)

Bootstrapping algorithm of (a, b)
@ Start from (a trivial) TLWE(vp + v1 X + -+ + oy XV -1)e
@ Rotate it by p = —ps(a, b) positions

@ Extract the constant term (which encrypts vp,)

N coefs mod XN + 1 can be viewed as 2N coefs mod X2V — 1 s.t. UNti = —U;

Rotate by p positions the coefficients ¢ € TLWE

e (XP?-c) when p is known
o (TGSW(XP?)[c) when p is unknown

How to rotate by —¢ (a,b) = —b+ > | a;8;?

@ Multiply by X—°

vy
1y o+

Bootstrapping Algorithm (animation)

Bootstrapping algorithm of (a, b)
@ Start from (a trivial) TLWE(vp + v1 X + -+ + oy XV -1)e
@ Rotate it by p = —ps(a, b) positions

@ Extract the constant term (which encrypts vp,)

N coefs mod XN + 1 can be viewed as 2N coefs mod X2V — 1 s.t. UNti = —U;

Rotate by p positions the coefficients ¢ € TLWE

e (XP?-c) when p is known
o (TGSW(XP?)[c) when p is unknown

How to rotate by —¢ (a,b) = —b+ > | a;8;?

@ Multiply by X~°
@ For i € [1,n] multiply by TGSW(X ~%5)

vy
1y o+

Bootstrapping Algorithm (animation)

Bootstrapping algorithm of (a, b)
@ Start from (a trivial) TLWE(vg + 1 X + - - +oy_1 XV 1)@
@ Rotate it by p = —ps(a, b) positions

@ Extract the constant term (which encrypts vp,)

N coefs mod XN + 1 can be viewed as 2N coefs mod X2V — 1 s.t. UNti = —U;

Rotate by p positions the coefficients ¢ € TLWE

e (XP?-c) when p is known
o (TGSW(XP?)[c) when p is unknown

How to rotate by —¢ (a,b) = —b+ > | a;8;?

@ Multiply by X ~°
@ For i € [1,n] multiply by TGSW(X ~@i¢i)
o X%% =14 (X% —1)-s;, with s; € {0,1}

vy
1y o+

Bootstrapping Algorithm (animation)

Bootstrapping algorithm of (a, b)
@ Start from (a trivial) TLWE(vg + 1 X + - - +oy_1 XV 1)@
@ Rotate it by p = —ps(a, b) positions

@ Extract the constant term (which encrypts vp,)

N coefs mod XN + 1 can be viewed as 2N coefs mod X2V — 1 s.t. UNti = —U;

Rotate by p positions the coefficients ¢ € TLWE

e (XP?-c) when p is known
o (TGSW(XP?)[c) when p is unknown

How to rotate by —¢ (a,b) = —b+ > | a;8;?

@ Multiply by X ~°
@ For i € [1,n] multiply by TGSW(X ~@i¢i)

o X¥% =14 (X% —1)-s;, with s; € {0,1}
o TGSW(X%°) =h+ (X% — 1) - TGSW(s;), where BK = TGSW(s;)

vy
1y o+

Security anal

36 /43

Security analysis

Numerical security estimates

Based on [APS15],[LP11],[DM15] results
Q Convert the instance to a lattice problem
v we tested: UniqueSVP, red to SIS, modSwitch...

Q Apply the best heuristics

©Q Optimized all non-relevant parameters: m, e, g, trials. . .

36 /43

Security analysis

Numerical security estimates

Based on [APS15],[LP11],[DM15] results
Q Convert the instance to a lattice problem
v we tested: UniqueSVP, red to SIS, modSwitch...

Q Apply the best heuristics

©Q Optimized all non-relevant parameters: m, e, g, trials. . .

Important security parameters

@ Noise rate: «

Q Entropy of the secret: n

and that’s all!

@) expressed solely as a function of (n, @) J

logo(1/01)

45

40

35

30

25

20

- the rainbow

Values of A(n,a)

BoopKey [11]

% 512

- 1 256
F 1 128

- o 64

37 /43

" contents

@ Conclusion

38 /43

TFHE implementation

https://tfhe.github.io/tfhe/

39 /43

https://tfhe.github.io/tfhe/

TFHE implementation

https://tfhe.github.io/tfhe/

o Before: 1 bootstrapping in 52 ms

39 /43

https://tfhe.github.io/tfhe/

TFHE implementation

https://tfhe.github.io/tfhe/

o Before: 1 bootstrapping in 52 ms

o Now: 1 bootstrapping in 20 ms

39 /43

https://tfhe.github.io/tfhe/

Conclusion

Summary
o Construction and abstraction of TLWE and TGSW
o The external product & : TGSW x TLWE — TLWE
o Faster bootstrapping

40 /43

Conclusion

Summary
o Construction and abstraction of TLWE and TGSW
o The external product & : TGSW x TLWE — TLWE
o Faster bootstrapping

More
o We can apply our results to leveled HE schemes

o We can improve this result and make FHE faster

40 /43

Conclusion

Summary
o Construction and abstraction of TLWE and TGSW
o The external product & : TGSW x TLWE — TLWE
o Faster bootstrapping

More
o We can apply our results to leveled HE schemes

o We can improve this result and make FHE faster

Thank you!

m.s.n.

40 /43

Bibliography

(*]

(4]

[APS15] Albrecht, M.R., Player, R., and Scott, S., "On the concrete
hardness of learning with errors.” Journal of Mathematical Cryptology
9.3 (2015): 169-203.

[BGV12] Brakerski, Z., Gentry, C., and Vaikuntanathan, V. "(Leveled)
fully homomorphic encryption without bootstrapping.” In Proceedings of
the 3rd Innovations in Theoretical Computer Science Conference (pp.
309-325). ACM (2012).

[BLPRS13] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., and
Stehlé, D. "Classical hardness of learning with errors.” In the proceedings
of STOC’13 (2013).

[BP16], Brakerski, Z., and Perlman, R. "Lattice-Based Fully Dynamic
Multi-Key FHE with Short Ciphertexts.” In the proceedings of CRYPTO
2016 (2016).

[BR15] Biasse, J-F., Ruiz, L., "FHEW with Efficient Multibit
Bootstrapping.” In the proceedings of LatinCrypt 2015 (2015).

41 /43

Bibliography

o [CS15] Cheon, J.H., Stehlé, D., "Fully Homomorphic Encryption over the
Integers Revisited.” In the proceedings of EUROCRYPT’15.
Springer-Verlag (2015).

o [CGGI16] Chillotti, I., Gama, N., Georgieva, M., and Izabachéne, M. "4
Homomorphic LWE Based E-voting Scheme.” In International Workshop
on Post-Quantum Cryptography (pp. 245-265). Springer International
Publishing (2016).

o [DM15] Ducas, L., Micciancio, D., "FHEW: Bootstrapping Homomorphic
Encryption in less than a second.” In the proceedings of
EUROCRYPT’15. Springer-Verlag (2015).

o [GINX16] Gama, N., Izabachene, M., Nguyen, P.Q., and Xie, X.,
"Structural Lattice Reduction: Generalized Worst-Case to Average-Case
Reductions.” In the proceedings of EUROCRYPT’16. Springer-Verlag
(2016).

o [Gen09] Gentry, C., "A fully homomorphic encryption scheme [Ph. D.

thesis].” International Journal of Distributed Sensor Networks, Stanford
University (2009).

Bibliography

o [GSW13] Gentry, C., Sahai, A., and Waters, B., "Homomorphic
encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based.” Advances in Cryptology—CRYPTO
2013. Springer Berlin Heidelberg, 2013. 75-92 (2013).

o [LP11] Lindner, R., and Peikert, C., "Better key sizes (and attacks) for
LWE-based encryption.” Cryptographers’ Track at the RSA Conference.
Springer Berlin Heidelberg (2011).

o [LPR10] Lyubashevsky, V., Peikert, C., and Regev, O., "On Ideal

Lattices and Learning with Errors over Rings." Advances in
Cryptology-EUROCRYPT 2010 (2010).

o [Reg05] Regev, O., "On lattices, learning with errors, random linear
codes, and cryptography.” In STOC, pp.84-93 (2005).

	Fully Homomorphic Encryption
	Applications

	TLWE
	The real torus
	LWE and TLWE

	TGSW and the external product
	Encryption and Gadget
	TLWE and TGSW

	Faster Bootstrapping
	Gate bootstrapping
	Security analysis

	Conclusion

