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@ Context and background
@ Cryptography and Discrete Logarithms
@ Short(est) tour of Jacobian varieties
@ About Index-Calculus
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Basic cryptography

Eve

Alice @7?—? Bob

N
X message / Y
>

Question: How can Alice and Bob share this common key ?

Solution: Use the Discrete Logarithm Problem !
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What is the Discrete Logarithm Problem

Discrete Logarithm Problem (DLP)
(G, +) abelian group. Given g, h € G, find (if it exists) x € Z s.t.:

[x]-g=h.

Is this a hard problem ?

STl () B
Alice Bob

]:FX
Pe=A ,  B=[t o

o elliptic curves E(Fg)

B @ Jacobian of algebraic curves
key = [a]B key = [b]A

Ir,(C)
= [ablg = [ablg

Several other protocols: El-Gamal, DSA/ECDSA, Pairings...
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Algebraic curves and Jacobian varieties

C: C(x,y) =0, for some polynomial C, algebraic curve of genus g.

g = 1: elliptic: y> =x3>+ Ax+ B,A,B€F, Q

g = 2: hyperelliptic: y2 + hi(x)y = x5+ ... [\

hle]Fq[x]7degh1§2 VO

g > 3: hyperelliptic: y2 + hy(x)y = x2&+1 4 ..
hi € Fy[x],deg < g

0
Non-hyperelliptic (all the rest). ?é
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Algebraic curves and Jacobian varieties
C: C(x,y) =0, for some polynomial C, algebraic curve of genus g.
e Divisors: formal sum D => " n;P;, n; € Z,P; € C

o Degree: degD => n;
o DV’ = {D s.t.deg D = 0}

Function on C: rational fraction f(x, y)

Principal divisor div f: zeros (n; > 0) + poles (n; < 0)
{ Principal divisors } = Prin(C) < Div°

Example for g =1 and line f(x,y) = 0:

P+ P+ P3—3P, =div f
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Algebraic curves and Jacobian varieties

C: C(x,y) =0, for some polynomial C, algebraic curve of genus g.

e Divisors: formal sum D => n;P;, n; € Z,P; € C
o Degree: deg D = n;
o DV’ = {D s.t.deg D = 0}

@ Function on C: rational fraction f(x,y)
@ Principal divisor div f: zeros (n; > 0) + poles (n; < 0)
o { Principal divisors } = Prin(C) < Div°

Jacobian Variety
as Class group: as Algebraic Variety:

Jac(C) = DiV°(C) / Prin(C) Jac(C) = C8/S,

Group law expressed by rational functions
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Jacobian elements and group law

C : C(x,y) = 0 algebraic curve of genus g, D € Div°(C), © € C.
From Riemann-Roch theorem: 3 Py,..., P, €C ;k < g s.t.:

K
D ~ >°(P;), where (P;) = P; — O.
i=1
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Jacobian elements and group law

C : C(x,y) = 0 algebraic curve of genus g, D € Div°(C), © € C.
From Riemann-Roch theorem: 3 Py,..., P, €C ;k < g s.t.:

K
D ~ Z(P,), where (P,) = P,' - 0.
i=1
Example with g = 1 - elliptic curve E: y2 =x3 4+ ax + b

Line through Py, P> : f(x,y) = 0.
=in J(E): (P1)+ (P2)+(P3)=0.
Define:

(P1) + (P2) := —(Ps3).
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Jacobian elements and group law

C : C(x,y) = 0 algebraic curve of genus g, D € Div°(C), © € C.
From Riemann-Roch theorem: 3 Py,..., P, €C ;k < g s.t.:

k
D ~ Z(P,), where (P,) = P,' - 0.
i=1

Example with g = 2 - hyperelliptic curve H : y?> = x> + ax3 + bx®> + cx + d

Cubic through Py,...,Ps: f(x,y) =0
=div f = (P1)+ -+ (Pa)+(Ps) + (Ps)
=in J(H): (P1)+---+(Ps) =0
Define:

(P1)+(P2) + (P3)+(Pa) = (—Ps)+(—Ps)
Dy + D> = Ds
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A discrete logarithm on an elliptic curve
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A discrete logarithm on an elliptic curve
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A discrete logarithm on an elliptic curve

3P
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A discrete logarithm on an elliptic curve

In crypto, the group is finite... But what if Q~ 28°P ?
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How to compute Discrete Logs in Jacobian varieties

Generic

exponential

lower bound Q(q% )

Baby Steps ‘% p — Pollard
Giant Steps q

Specialized (for curves)

Hyperelliptic [ Non-hyperelliptic
Large g Small degree
[Enge-Gaudry-Stein] [Enge-Gaudry-Thomé]

subexponential
DLP
ON
CURVES
exponential
but "better"
Smooth Decomposition
qg=q"
Non-hyper Hyperelliptic Elliptic All
g=3 g>2 g=1 g>2
0> 71) O(¢%)  Ol®%) Ot ™)
[Diem] [Gaudry] [[Ggiidn:ﬁ,] [Nagao]
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About Index-Calculus

F+,(€) = {g) @19?
h=lz]-g Index Calculus

. Linear
Input:
puts ——»Harvesting—» Algebra

What ?
1) Select Factor base
F={R,....,Fx} C F,(C)
2) Find NN relations: a,b,ci; €Z
lalg + [b]h = caFy + -+ cinFn
How ?
Smooth Test if some u € Fy[7]is F,—split

Decomposition F, = Fgn
Solve polynomial systems over F;

3) Build (very sparse) matrix (Cij)

Discrete
Logarithm
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About Index-Calculus

7,0 = o) @??
=g

71

@HJ’
x
Index Calculus T

. Linear Discrete
Inputs ——»Harvesting——» ;
Algebra Logarithm
What ? What ?
1) Select Factor base 1) Compute v € ker(ci;)\ {0}
-7:={F1,--~,F1\’}C;71Fq(c) How ?

2) Find NN relations: a,b,ci; €Z

Wiedemann Filtering

[alg + Blh = ciF1 + -+ + cin By
How ?
Smooth Test if some u € Fy[7]is F, —split

Decomposition F, = Fgn
Solve polynomial systems over Fj

3) Build (very sparse) matrix (Cij)

2) Use v to retrieve [x]
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About curves’ security

How to increase security and keep a “reasonable” field 77

Pros: Cons:
- #T(H) ~ q¢ Expensive
Higher genus more security arithmetic

#I(M) ~ q™
Extension [Fgn better arithmetic Decomposition
same security attacks''

t [Gaudry'07, Gaudry-Lubicz'09, Renes&al.'16, ...]
11 [Gaudry'09, Nagao'10, Diem'11]

Comments:
g = 2 competitive
with g = 17

attack practical
only for very small

g, n.
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About curves’ security

How to increase security and keep a “reasonable” field 77

Pros: Cons: Comments:

Higher genus

make attack
Extension [y Decomposition practical for more
attacks g, n.
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@ Contribution : improving smooth relations harvesting
@ Old-school smooth harvesting
@ New approach: Harvesting by Sieving
@ Timings
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Old-school harvesting for smooth divisors

non-hyperelliptic case

C : C(x,y) = 0 non-hyperelliptic of genus g > 3. ([Diem] deg C = g + 1)

Factor base 7 = { P € C(F,) } (rational points). To find one relation:

Non-hyperelliptic case [Diem'08]
© Select P, P, € F.

@ Compute F € Fy[x] describing
C N the line (P1P2)

@ If F splits over Fq (“div(P1P,) is smooth”)
Then relation.
Else Try new Py, P5.

deg F = g — 1 so probability : ﬁ

12 / 45



Old-school harvesting for smooth divisors

non-hyperelliptic case

C : C(x,y) = 0 non-hyperelliptic of genus g > 3. ([Diem] deg C = g + 1)

Factor base 7 = { P € C(F4) } (rational points). To find one relation:

Non-hyperelliptic case [Diem'08]
© Select P, P, € F. Q "Free”

© Compute F € Fy[x] describing @ Cheap
C N the line (P1Ps).

@ If F splits over F, (“div(PyP,) is smooth”) Q Costs ~ g°logq
Then relation. 95% of time: checking if
Else Try new Py, P,. smooth or not
deg F = g — 1 so probability : (g 1) and duplicate relations
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New approach: Harvesting by Sieving

V.Vitse, A.Wallet, Improved Sieving on Algebraic curves, LatinCrypt 2015

Sieving = time-memory trade-off.
Theory: Add one degree of freedom in decompositions.
Practice: Store results of cheap computations. Smoethness-checks

Existing: Cons:
[JouxVitse'12]: small extensions — different context
[SarkarSingh'14]: hyperelliptic only — sort, backtracking, hyperelliptic only

Our contribution:

o Clarify formulation of [SarkharSing'14]
@ Skip computations, better memory efficiency, no sorting.

@ Adapt to all curve types and to other Index-Calculus variants.
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lllustration for non-hyperelliptic curves

C : C(x,y) = 0 non-hyperelliptic of genus g > 3. ([Diem] deg C = g + 1)

Factor base F = {P, Py, P>,...}. First round of sieving: fix P = (xp, yp).

Slope of a line through P: A\p(P;) = Yi— Yp (cheap!)
Xj — Xp
Loop over F, compute Ap(P;)'s:
Ap(P1)  Ap(P2)  Ap(Ps3)

T=1 0 0 0 . ]
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Slope of a line through P: A\p(P;) = Yi— Yp (cheap!)
Xj — Xp
Loop over F, compute Ap(P;)'s:
Ap(P1)  Ap(P2)  Ap(Ps3)

T=1] 1 0 0 .. ]

o
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lllustration for non-hyperelliptic curves

C : C(x,y) = 0 non-hyperelliptic of genus g > 3. ([Diem] deg C = g + 1)

Factor base F = {P, Py, P>,...}. First round of sieving: fix P = (xp, yp).

Slope of a line through P: A\p(P;) = Yi— Yp (cheap!)
Xj — Xp

Loop over F, compute Ap(P;)'s:
Ap(P1)  Ap(P2)  Ap(Ps3)

T=1 1 1 0 o]

Pz
P>
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lllustration for non-hyperelliptic curves

C : C(x,y) = 0 non-hyperelliptic of genus g > 3. ([Diem] deg C = g + 1)

Factor base F = {P, Py, P>,...}. First round of sieving: fix P = (xp, yp).

Slope of a line through P: A\p(P;) = Yi— Yp (cheap!)
Xj — Xp
Loop over F, compute Ap(P;)'s:
Ap(P1)  Ap(P2)  Ap(Ps3)

T=1 1 1 1 ]

]

P;
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lllustration for non-hyperelliptic curves

C : C(x,y) = 0 non-hyperelliptic of genus g > 3. ([Diem] deg C = g + 1)

Factor base F = {P, Py, P>,...}. First round of sieving: fix P = (xp, yp).

Slope of a line through P: A\p(P;) = Yi— Yp (cheap!)
Xj — Xp

Loop over F, compute Ap(P;)'s:

/
Ap(P1)  Ap(P2) Ap(P3) F
T=1 2 1 1 ]
Ap(Pi) = Ap(P;) < P, P;, P; lined up. Pa ;
P
p,
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lllustration for non-hyperelliptic curves

C : C(x,y) = 0 non-hyperelliptic of genus g > 3. ([Diem] deg C = g + 1)

Factor base F = {P, Py, P>,...}. First round of sieving: fix P = (xp, yp).

Slope of a line through P: A\p(P;) = Yi— Yp (cheap!)
Xj — Xp

Loop over F, compute Ap(P;)'s:
Ap(P1)  Ap(P2)  Ap(P3)
T= | 2 1 1 e ]
Ap(P;) = Ap(Pj) & P, P;, P; lined up. 5

When T[\] = g = Relation !

o

P>
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Analysis in the non-hyperelliptic case

For one loop:

e O(q) multiplications + O(q) storage.

= Harvesting in = glq.
o Expect =~ g relations.

Overall:
Old-school: =~ (g — 1)!q(g?log q) =  Factor ~ glogq.

Relations management

@ Loop on P uses all lines through P: no duplicate relations.
@ How to handle the table ?

© Counter list: factorize only splitting polynomials
@ Hash tables & more memory: no factorization at all
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Timings

q 78137 177167 823547 1594331

Diem 11.5 27.5 135.1 266.1

Genus 3, Sievi

degree 4 ieving 3.6 9.3 46.9 94.6
Ratio 3.1 29 2.8 2.8
Diem 51.8 122.4 595.8 1174

Genus 4, .

degree 5 Sieving 15.5 40.1 195.1 387.6
Ratio 33 3.1 3.1 3
Diem 229.4 535.8 2581 5062

Genus 5, Sievi

degree 6 ieving 75.6 199 969.3 1909
Ratio 3 2.6 2.6 2.6
Diem 1382 3173 14990 29280

Genus 7, Sievi

degree 7 ieving  458.5 1199 5859 11510
Ratio 3 2.6 2.5 2.5

Implementation in Magma; CPU Intel®© Core i5@2.00Ghz processor.
Time to collect 10000 relations, expressed in seconds.
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© Decomposition attacks on curves: state of the art
@ On elliptic curves [Diem], [Gaudry]
@ On hyperelliptic curves [Nagao]
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What are Decomposition attacks?

From now on, assume the base field is some Fg», n > 2.

Point m-Decomposition Problem (PDP,,)
Let H be a curve of genus g, R € J(H) and F C J(H).

Find, if possible, D1,...,Dp, € Fst. R=D;+---+ D,,.

Decomposition harvesting = solving multiple PDP, instance, for some m.

How can this be done 7 Let's see on elliptic curves.
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Summation polynomials for elliptic curves

Let E be an elliptic curve over F with point at infinity O, and m > 3.

Definition (Semaev)

The m™" summation polynomial for E is S, € F[X1,..., X,,] generating the
projection of the “group law ideal” over a set of coordinates:

Sm(x1,. - yxm)=0< I y1,...,¥m eF s.t. P; = (x;,yi) € E and
Pi+--+P,=0.
Projection of the group law on the x-line

Pi+P+P3=0

algebra | T geometry

S3(x1,x2,x3) =0

1! To! T3,
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Solving PDP, for elliptic curves [Diem], [Gaudry]

Goal: Find decomposition Py + --- + P, of R € E(F)

geometry algebra
R:P1++Pm = Sm+1(XR,X1,...,Xm):O

New goal: Find xi,..., Xy, i.e. solve Spi1(xr, X1, ..., Xm)

20 / 45



Solving PDP, for elliptic curves [Diem], [Gaudry]

New goal: Solve S, 1(xg, X1,...,Xmn) Under-determined
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Solving PDP, for elliptic curves [Diem], [Gaudry]
New goal: Solve S,1(xg, X1,...,X,)  Under-determined

n—1 )
1. Base field is Fg» = Spang, (L,t,... AL Letm=n, and X; = > Xjt.
i=1

Then 3's; € Fo[X10,...,Xnn-1] s.t.: Xij €Fy

n—1
5n+1(XR7 Xla e 7Xn) - Z Si(Xl,Ov e ,)<n,n71)tj

=
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Solving PDP, for elliptic curves [Diem], [Gaudry]
New goal: Solve S,1(xg, X1,...,X,)  Under-determined

n—1 .
1. Base field is Fg» = Spang, (1,t,...,t""!). Let m =n, and X; = }_ Xjtl.
i=1

Then 3's; € Fo[X10,...,Xnn-1] s.t.: Xij €Fy
n—1
5n+1(XR7X1a"'7 ZSI X107 .. nn l)tJ
i=0
2. Add constraints: look for P s.t. x; e Fqg & Xij=---=X,;=0, >0

Sl(le s 7Xn) =0
S,H_]_(XR,X]_,...,X,,):O s W= :
sn(Xla s 7Xn) =0

0-dimensional

20 / 45



Solving 0-dimensional systems with Grobner Bases tools

Original — DRL Basis —  Change order —  Univariate
System F4, F5 FGLM Solving
A: degree of regularity D: #tsolutions
n variables
A w
s equations 0(5("2 ) ) O(an)

w: lin. alg. exponent
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Solving 0-dimensional systems with Grobner Bases tools

Original — DRL Basis —  Change order
System F4, F5 FGLM
A: degree of regularity D: #tsolutions
n variables
A w
s equations 0(5("2 ) ) O(an)

computational
bottleneck

Goal: reduce D

Univariate
Solving

—
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About degrees of ideals

Let x = (x1,...,X,) and Z C F[x]. HS : Hilbert Series

deg Z = #points “when cut by dimZ hyperplanes”
= HSppyz(1)
= dimg F[x]/Z when dimZ = 0.

With weights w = (wy, ..., w,):
HSpp/z(1
deg,, T — IF[[]]/I( )
[Timy wi

= dimp F[x]/Z when dimZ = 0.
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About degrees of ideals

Let x = (x1,...,X,) and Z C F[x]. HS : Hilbert Series

deg Z = #points “when cut by dimZ hyperplanes”
= HSppyz(1)
= dimg F[x]/Z when dimZ = 0.

With weights w = (wy, ..., w,):
HSpp/z(1
deg, Z = 7F,[,]/I( )
[Timy wi
= dimp F[x]/Z when dimZ = 0.
d z
Proposition: With ¢(x;) = x", deg,, Z = eii().
[Tiy wi

Corollary: If dimZ = 0, #solutions is divided by []_, w;.
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Degree of systems in PDP,, solving on elliptic curves

S]_(Xl, e ,Xn) =0
5n+1(XR,X1,...,Xn):O s W= :
s(X1s .., Xn) =0
deg W = nl2n(n—1)
FGLM runs in O(deg W*) + Probability for a relation: 1/n!
Known reduction: deg W = 27(n=1) > 2(n=1)*1 ~ o(n-1)(n-2)ft

PDP,, solving for higher genus?

t: [Faugére-Gaudry-Huot-Renault]
t1: [Faugére-Huot-Joux-Renault-Vitse]
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Geometric view of Decompositions

H - y2 + hl(x)y _ ho(X), Example if g =2 and m = 4:
R = {le Sy Rg} € j('H), Ri = (XRi7yRi)'

Goal: R=P; +---+ Py

Ry
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Geometric view of Decompositions

H - y2 + hl(x)y — ho(X), Example if g =2 and m = 4:

R=A{Ri,....Rs} € J(H), Ri = (xr,, yr,).
Goal: R =Py +---+ Pp,

[Nagao] Find f(x,y) of lowest degree s.t.:
f(XRiﬂyRi) = f(Xivyi) =0.

Space of such f's: Span(fi,...,fy)
d
f=>5 af, a=(a1,...,aq4).
i=1
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Geometric view of Decompositions

H 1 y? + hi(x)y = ho(x),
R = {Rl,. Cy Rg} S j(?‘[), R = (XR,-a)/R,-)-

Goal: R=P; +---+ Py

[Nagao] Find f(x,y) of lowest degree s.t.:
f(XRnyRi) = f(Xi’yi) =0.

Space of such f's: Span(fi,...,fy)
d

f=>5 af, a=(a1,...,aq4).
i=1

Decomposition Polynomial DPg

DPgr(x) = —Fle(s;/m)’(:)) =x"+ mg)l N;(a)x’

If f describes a decomposition:

DPR(X,'):O7 1§I§ m

Example if g =2 and m = 4:

Ty
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Solving PDP,, for hyperelliptic curves [Nagao|

H of genus g, defined over Fy, R € J(H).

m—1 .
Goal: Find a s.t. DPg(x) =x™+ Y N;(a)x' has root x1,..., Xmn
i=0

1
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Solving PDP,, for hyperelliptic curves [Nagao|

H of genus g, defined over Fyn, R € J(H).
m—1

Goal: Find as.t. DPr(x) = x™ + Y. Ni(a)x’ has root xi,...,xn € F,
i=0

1. Add constraints: Look for P; with x; € Fq

All x; € Fq = All N,-(a) € ]Fq
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Solving PDP,, for hyperelliptic curves [Nagao|

H of genus g, defined over Fyn, R € J(H).

ng—1

Goal: Find as.t. DPr(x) = x"¢ + Y N;(a)x’ has root xi,. ..

i=0
1. Add constraints: Look for P; with x; € Fq

All x; € Fq = All N,-(a) € ]Fq

2. With Fg = Spang, (1,t,...,t""1), write a; = 3 ajti.
Then 3 Njj € Fglaio,...,ad,n-1] S.t.:

N,-(a ZNU(al 0y« ad,n— 1)t

3. N,-(a) S Fq &S W= {Nij(al,07 ey ad7,,_1) =0 fOI’j > 0}
Set m = ng, so that dim W = 0 and solve W.
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Degree of systems

W = {N,-J-(aLo, R ad7,,_1) =0 fOI’j > 0}

deg W = 2n(n—1)g

FGLM runs in O(deg W) + Probability for a relation: 1/(ng)!

+ No degree reduction known. ex g=2,n=3
+ Huge degree, lot of variables. deg = 4096, #vars = 12
+ Very low probability of decomposition. proba=1/720

= very few practical cases (essentially n(n —1)g < 12).
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Situation

Before this thesis:
v ¢

Nagao: works for all genus. g = 1. Summation more efficient.
But: quickly untractable. But: only for g = 1!

ex: g =2,n=3,k =TF5s
Solving one PDPg instance =~ 1500sec.
Finding one relation =~ 12.5 days!

Contribution:
@ Introduce and analyze a Summation modelling for higher genus.

@ Reduce systems’ degree in even characteristic.
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@ Contribution: summation Ideals
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Summation Variety

J-C. Faugere, A. Wallet, The Point Decomposition Problem on Hyperelliptic curves,
DCC Journal [In revision]

H hyperelliptic curve over F. R € J(H).

Goal: Describe Vip g = {(P1,...,Pn): > i1 (Pi) = R} “Summation Variety”

20 / 45



Summation Variety

J-C. Faugere, A. Wallet, The Point Decomposition Problem on Hyperelliptic curves,
DCC Journal [In revision]

H hyperelliptic curve over F. R € J(H).

Goal: Describe Vip g = {(P1,...,Pn): > i1 (Pi) = R} “Summation Variety”

m—1
From [Nagao|: DPg(x) = x" + Z N;(a)x’ (1)
i=0
R=(P1)+ -+ (Pm) iff DPgr(x;) =0 for all i. With e; = Symj(x1,...,Xm):

m—1
DPr(x) = x"+> (~1)" "epn_ix’ (2)
i=0
Equations (1) and (2) give:
Nm—l(a) = €1,
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Summation ideals

Theorem
Let T, g C F[x,a] be the ideal defined previously. Then Vy, g = V(I r).

Conditions in x : eliminate a

Geometry Algebra
projection onto x Grébner basis of Z, g N F[x].

mth Summation ldeals

For m > g + 1, the m*h summation ideal for % is Z,, g N F[x].

If (Sm,r) = Zm,r NF[X], then S, ¢ is called a set of m-summation polynomials,
or a mt" summation set.
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Properties of Summation Ideals

Sm,r(x) : evaluation of all § € S, g at x. H hyperelliptic curve over F.

Summation property

Sm,R(X) =0< Jy1,---, Ym eFst. P = (X,',y,') € H and
(P)+ -+ (Pn) = R

Invariance by permutations

(Sm,R)G'" = (Sm,r), and the modelling computes a symmetrized summation set.

Let V = V(Z,, g NFle]) (symmetrized).

CodmV=g = #S,r>g Heuristic: degV = 2m2¢
in practice, #S, r > g [Diem]: proven for g =1
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New PDP,, solving for hyperelliptic curve

Input: H def. over Fgn, R € J(H), F ={(P) € J(H) : x(P) € Fq}.
Goal: Find decomposition R = (P1) 4+ --- 4+ (Png), Pi € F.

1. Compute ngt" Summation Set S, r.

R:P1+"'+Png<:>S"ng(X1""’X”g):0'
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New PDP,, solving for hyperelliptic curve

Input: H def. over Fgn, R € J(H), F ={(P) € J(H) : x(P) € Fq}.
Goal: Find decomposition R = (P1) 4+ --- 4+ (Png), Pi € F.
1. Compute ngt" Summation Set S, r.

R:P1+~"+Png<:>Sng7R(X1""’X”g):0'

2. Sng.r ={S1,-..,5/} and Fgr = Spang_(1,t,...,t""1).
355 € Fy[X, ..., Xog] st

=

n—

V1<i<r, Si(xi,...,Xng) = U(Xl,...,Xng)tj.
i=0
511(X1, .. Xng) 0
3. Sng,R(X1>~-aXng) =0 & W=
Srn(X1, .-y Xng) =0

32 / 45



Analysis, comparison with Nagao

511(X1, ..

S”&R(XlW'ang):O s W=

Srn (Xl .

Let V= V(Z,, r NFle]) (symmetrized).

e r > g = CodimV = dim W = 0.
o m=ng = degV =201,

S Xng) =0

-y Xng) =0

o W c W,(V) - Weil Restriction of V over F,: degW,(V) = (deg V)".
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Analysis, comparison with Nagao
511(X1,...,x,,g):
S”g’R(X]J"WXng):O s W=

Sn(X1, -« Xng) =
Let V= V(Z,, r NFle]) (symmetrized).

r > g = CodimV = dim W = 0.

o m=ng = degV =201,

o W c W,(V) - Weil Restriction of V over F,: degW,(V) = (deg V)".
= deg W = (degV)" = 2"(n—1)e,

°

Same degree as Nago = Same practical cases...

Less variables but need to compute an elimination basis.

The two modellings are “equivalent”.
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© Contribution: degree reduction in even characteristic
@ Square coefficients of DPg
@ Degree reduction for Nagao's approach
@ Degree reduction for summation approach
@ Simulation of a realistic DL computation

34 / 45



Structure of DPg in even characteristic

J-C. Faugére, A. Wallet, The Point Decomposition Problem on hyperelliptic curves,
DCC Journal [In revision]

H : y? + hi(x)y = ho(x) hyperelliptic of genus g over F.
m—1

Fix R € J(H) and DPg(x) = x™+ > N;(a)x'.
i=0

Square coefficients

Let hy(x) = 3%, aix’, and let L = d — t be the length of hy(x).
There are exactly g — L + 1 square coefficients among the N;(a).

In Nagao's approach: In Summation approach:
Nj(a) square = /N;(a) =0 Induces weight system on variables.
Replaced by linear equations Weighted degree is smaller.
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Degree reduction for Nagao's approach over Fyu

H : y? + hi(x)y = ho(x) hyperelliptic of genus g over Fa,
With additional reductions:

Theorem

Let hy(x) = 3%, aix’, and let L = d — t. Solving a PDP, instance on H can be
done by solving a system of degree:

ey, = 2(n=D((—DgL-1)

(n—-1)

From dgq = 2 "€ we obtain:

(tight bounds) 2(n=1((n-1e-1) < 4 . < 20-1)(ne-1)

factor 2(n—1)(g+1) dold o1
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Degree reduction for Nagao's approach over Fyu

H : y? + hi(x)y = ho(x) hyperelliptic of genus g over Fa,
With additional reductions:

Theorem

Let hy(x) = 3%, aix’, and let L = d — t. Solving a PDP, instance on H can be
done by solving a system of degree:

ey, = 2(n=D((—DgL-1)

From doig = 2(" 1" e obtain:

(tight bounds) 2(n—D((n—e-1) < 4 . < 2(=1ng-1)

Example: g =2,n = 3. Type Il curve y? + xy = x® + ax3 4 bx? + ¢ over Fous
Solving over Fpis with Magma 2.19:
@ doig = 2'2 = 4096. Time: =~ 1500s.
@ dnew = 2% = 64. Time: ~ 0.029s

Ratio: ~ 75000
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Square equations and weights: degree reduction

Let k = #squared N;(a). Renumber s.t.:
m—1 . m—k—1 .
DPr(x)=x"+ > N2 .(a)x'+ > Ny_i(a)x'.
i i=0

i=m—k
N2(a) = Ni(a) = e
Im R jm,R
Ni(a) = ¢ Ni(a) = e
T. = Tpnr NFle] Je = Tmr NFle]
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Square equations and weights: degree reduction

Let k = #squared N;(a). Renumber s.t.:
m—1 . m—k—1 i
DPr(x)=x"+ > N2 .(a)x'+ > Ny_i(a)x'.
' i=0

i=m—k
Kliz(a) =g Ni(a) = e
Im R Jm,R
Ni(a) = ¢ Ni(a) = &
(en)=e"
T. = Tmg NFle] o ( Je = Tm,r N F[e] ]

With ¢(ei) = €', Le is the radical of p(Je).

Applications: Find points in V/(7.) instead of V(Z,).
"Weighted degree of 7, is smaller than degZ."
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Degree reduction in summation approach over Fou, step 1

Let V,; = V(Je)v V), = V(Ie)'

. . deg VI
There is a constant C depending on hy s.t. deg,,(V;) = C - gL

With Fow = Span]sz(l,t, Co 7Y write ¢ = 27;01 eyt

weight e; = 2 = weight ejj = 2 = degW,(V.) N V(ejj) = 2deg W, (V)
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Degree reduction in summation approach over Fou, step 1

Let V,; = V(Je)v V, = V(Ie)'

. . deg VI
There is a constant C depending on hy s.t. deg,,(V;) = C - gL

With Fow = SpanFZk(l,t, Co 7Y write ¢ = 272_01 eyt
weight e; = 2 = weight ejj = 2 = degW,(V.) N V(ej;) = 2degW, (V)

Let W =W,(V,)N N V(e;j). Experimentally, C = 2t
ij>1

Corollary: In PDP,, instances (m = ng), with L =length of h;:

. dold _ dod
degW = C"- 2(n—1)(g—L)+nL — 2(n-1)(g—L)"
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Degree reduction in summation approach, step 2

H : y? + hi(x)y = ho(x) hyperelliptic of genus g over Fa,
With additional reductions:

Theorem

Let hi(x) = Z?:t aix', and let L = d — t. Solving a PDP,, instance on H can be
done by solving a system of degree

Aoy = 207~ D((n—DgL-1).

From dgyq = 2(n—1ne.

(tight bounds) 2(—D((r—De-1) < 4 < 20-1Dlng=1)

factor 2(n—1)(g+1) dold -1

new

Q
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Degree reduction in summation approach, step 2

H : y? + hi(x)y = ho(x) hyperelliptic of genus g over Fa,
With additional reductions:

Theorem

Let hy(x) = 3%, aix’, and let L = d — t. Solving a PDP, instance on . can be
done by solving a system of degree

Aoy = 207~ D((n—DgL-1).

From dgyq = 2(n—1ne.

(tight bounds) 2(—D((n-1g-1) < 4 < 20-1e-1)

What is hidden:
@ Best reduction achieved for less types of curves.

@ Need to find curves isomorphisms to obtain same reductions as in Nagao's.
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Comparison of approaches after reduction

Best reduction Implementation | Best running time'
Nagao immediate when L =0 Easy =~ 0.029s.
Summation needs L = 0 and Tricky ~ 0.34s.
additional work

Winner for a realistic computation: Nagao’s approach.

t: for binary genus 2 curves over Faas
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Simulation of a realistic DL computation

Parameters:
O H:y?+xy=x>+fx3+x3x+1, g =2.
@ Field K = Faos, n = 3.
@ #J(H)=2x3xp, logp =184, p prime.

= Generic bound ~ 292

Modelling for PDPg instances: Dedicated implementation:
@ Nagao with Degree reduction. @ DRL Basis: code generating techniques
and F5 alg.
@ lIdeals have degree 64, field: Fys1. @ Change-ordering: Sparse FGLM

[Faugere-Moul].
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Simulation of a realistic DL computation

Parameters:
O H:y?+xy=x>+fx3+x3x+1, g =2.
@ Field K = Faos, n = 3.
@ #J(H)=2x3xp, logp =184, p prime.

= Generic bound ~ 292

Modelling for PDPg instances: Dedicated implementation:
@ Nagao with Degree reduction. @ DRL Basis: code generating techniques
and F5 alg.
@ lIdeals have degree 64, field: Fys1. @ Change-ordering: Sparse FGLM

[Faugere-Moul].

Solving one PDPg instance:
DRL Basis: 3.87 - 10~ “sec. Parallel Harvesting:
+ Sparse-FGLM: 5.93 - 10~ *sec.

~ 231 H H .
+ Univariate Solving: 2.22 - 10~ 3sec. ~ 2% relations with 8000 cores:

~ 7 days.

~ 3.2-10 3sec.

Finding one relation: ) ) )
x (ng)! = 720 in avg. (Before: estimation in years...)

Avg. total time ~ 2.3 sec.
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@ Conclusion & perspectives
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About my work

General Topic: Index-Calculus over curves with genus g > 2

Objectives:
@ Focus on the harvesting phase -> Improve existing methods
Design new ones
@ Sharpen complexity bounds -> Restrict set of practical parameters
Highlight potential weaknesses
Methods: Tools:
o Analyze algebraic properties o Computer Algebra (Magma, Maple)
o Exploit field's structure o Efficient Grobner Bases libraries
(characteristic, subfields, ...) (Maple/ FGb)
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Conclusion

Results:
> Improved harvesting phase in “Smooth” search

> Introduced/analyzed Summation ideals for higher genus

Not presented: — Less efficient definition
— Obstruction to incremental computations

> Reduced degree of PDP,, systems in even characteristic
Not presented: — Frobenius action over parametrizations in general
— Reductions not linked to squares & technicalities.

> Made practical harvesting on a meaningful genus 2 curve

Side results: Limits:

+ Nagao > Summation in characteristic 2. - No reduction in characteristic p > 2

- Symmetries of Summation variety

i L unclear
+ Experimentally, Nagao > Summation in

characteristic p. - Can’t exploit Jacobian automorphisms

(2-torsion,...).
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Perspectives

Generalization using Kummer Varieties

> Give theoretical framework of “Summation Polynomials” for Abelian Varieties.
If g = 2: group law well-understood with theta functions.
[Gaudry'07], [Gaudry-Lubicz'09], [Lubicz-Robert'15], [Costello & al.'16], ...

> Explicit “Jacobian” Summation Polynomials using theta arithmetic.

> Design new Decomposition Attack.

Exploiting Symmetries: if g = 1, degree reduction achieved with 2-torsion.

? Can we exploit automorphisms in the Kummer variety ?
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Thank you for your attention !

B
&
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