Le problème de décompositions de points dans les variétés Jacobiennes

Alexandre Wallet

PhD Director: Jean-Charles Faugère PhD Advisor: Vanessa Vitse

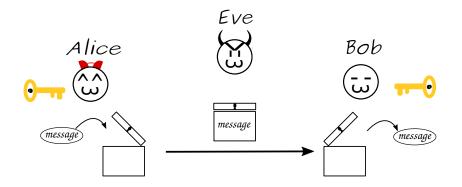
LIP6, Département CALSCI, équipe PolSys 4 Place Jussieu, UPMC

Context and background

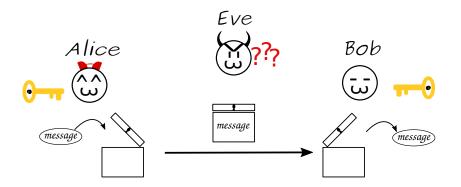
- Cryptography and Discrete Logarithms
- Short(est) tour of Jacobian varieties
- About Index-Calculus
- 2 Contribution : improving smooth relations harvesting
- 3 Decomposition attacks on curves: state of the art
- Ontribution: summation Ideals
- 5 Contribution: degree reduction in even characteristic
- 6 Conclusion & perspectives

Basic cryptography

Basic cryptography



Basic cryptography



Question: How can Alice and Bob share this common key ? Solution: Use the Discrete Logarithm Problem !

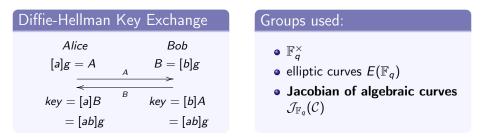
What is the Discrete Logarithm Problem

Discrete Logarithm Problem (DLP)

(G, +) abelian group. Given $g, h \in G$, find (if it exists) $x \in \mathbb{Z}$ s.t.:

$$[x] \cdot g = h$$

Is this a hard problem ?



Several other protocols: El-Gamal, DSA/ECDSA, Pairings...

Algebraic curves and Jacobian varieties

C: C(x, y) = 0, for some polynomial C, algebraic curve of **genus** g.

$$g=1$$
: elliptic: $y^2=x^3+Ax+B, A, B\in \mathbb{F}_q$

$$g = 2$$
: hyperelliptic: $y^2 + h_1(x)y = x^5 + \dots$
 $h_1 \in \mathbb{F}_q[x], \deg h_1 \leq 2$

$$g\geq 3$$
: hyperelliptic: $y^2+h_1(x)y=x^{2g+1}+\ldots$
 $h_1\in \mathbb{F}_q[x], \deg h_1\leq g$

Non-hyperelliptic (all the rest).

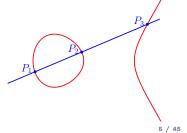
Algebraic curves and Jacobian varieties

C: C(x, y) = 0, for some polynomial C, algebraic curve of **genus** g.

- **Divisors:** formal sum $D = \sum n_i P_i, n_i \in \mathbb{Z}, P_i \in C$
- **Degree:** deg $D = \sum n_i$
- $Div^0 = \{D \text{ s.t. } \deg D = 0\}$
- Function on C: rational fraction f(x, y)
- Principal divisor div f: zeros $(n_i > 0)$ + poles $(n_i < 0)$
- { Principal divisors } = $Prin(C) \leq Div^0$

Example for g = 1 and line f(x, y) = 0:

$$P_1 + P_2 + P_3 - 3P_\infty = \operatorname{div} f$$



Algebraic curves and Jacobian varieties

C: C(x, y) = 0, for some polynomial C, algebraic curve of **genus** g.

- Divisors: formal sum $D = \sum n_i P_i, n_i \in \mathbb{Z}, P_i \in C$
- Degree: deg $D = \sum n_i$
- $Div^0 = \{D \text{ s.t. } \deg D = 0\}$
- Function on C: rational fraction f(x, y)
- Principal divisor div f: zeros $(n_i > 0)$ + poles $(n_i < 0)$
- { Principal divisors } = $Prin(C) \leq Div^0$

Jacobian Variety as Class group:

as Algebraic Variety:

 $\operatorname{\mathsf{Jac}}(\mathcal{C}) = \operatorname{\mathsf{Div}}^0(\mathcal{C}) / \operatorname{\mathsf{Prin}}(\mathcal{C}) \qquad \qquad \operatorname{\mathsf{Jac}}(\mathcal{C}) = \mathcal{C}^g / \mathcal{S}_g$

Group law expressed by rational functions

Jacobian elements and group law

 $\mathcal{C} : \mathcal{C}(x,y) = 0$ algebraic curve of genus $g, D \in \mathsf{Div}^0(\mathcal{C}), \mathcal{O} \in \mathcal{C}.$

From Riemann-Roch theorem: $\exists P_1, \ldots, P_k \in \mathcal{C}$, $\mathbf{k} \leq \mathbf{g}$ s.t.:

$$D \sim \sum_{i=1}^{k} (P_i)$$
, where $(P_i) = P_i - \mathcal{O}$.

Jacobian elements and group law

 $\mathcal{C} : \mathcal{C}(x,y) = 0$ algebraic curve of genus $g, D \in \mathsf{Div}^0(\mathcal{C}), \mathcal{O} \in \mathcal{C}.$

From Riemann-Roch theorem: $\exists P_1, \ldots, P_k \in \mathcal{C}$, $\mathbf{k} \leq \mathbf{g}$ s.t.:

$$D \sim \sum_{i=1}^{k} (P_i)$$
, where $(P_i) = P_i - \mathcal{O}$.

Example with g = 1 - elliptic curve $E : y^2 = x^3 + ax + b$

Line through $P_1, P_2 : f(x, y) = 0.$ $\Rightarrow \operatorname{div} f = (P_1) + (P_2) + (P_3).$ $\Rightarrow \operatorname{in} \mathcal{J}(E) : (P_1) + (P_2) + (P_3) = \mathcal{O}.$

Define:

 $(P_1) + (P_2) := -(P_3).$

		P_3
P		
PI)	
Ú		$-P_3$
		6 / 45

Jacobian elements and group law

 $\mathcal{C} : \mathcal{C}(x,y) = 0$ algebraic curve of genus $g, D \in \mathsf{Div}^0(\mathcal{C}), \mathcal{O} \in \mathcal{C}.$

From Riemann-Roch theorem: $\exists P_1, \ldots, P_k \in \mathcal{C}$, $\mathbf{k} \leq \mathbf{g}$ s.t.:

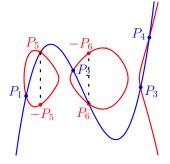
$$D \sim \sum_{i=1}^{k} (P_i)$$
, where $(P_i) = P_i - \mathcal{O}$.

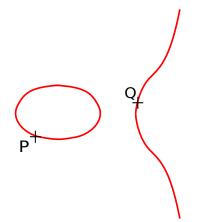
Example with g = 2 - hyperelliptic curve $\mathcal{H} : y^2 = x^5 + ax^3 + bx^2 + cx + d$

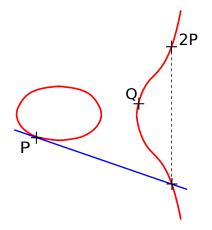
Cubic through $P_1, \dots, P_4 : f(x, y) = 0$ $\Rightarrow \text{ div } f = (P_1) + \dots + (P_4) + (P_5) + (P_6)$ $\Rightarrow \text{ in } \mathcal{J}(\mathcal{H}) : (P_1) + \dots + (P_6) = \mathcal{O}$

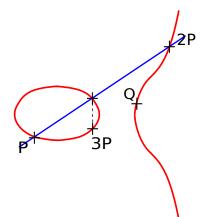
Define:

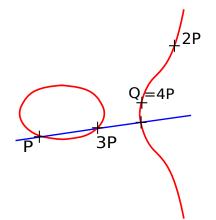
$$\underbrace{(P_1) + (P_2)}_{D_1} + \underbrace{(P_3) + (P_4)}_{D_2} = \underbrace{(-P_5) + (-P_6)}_{D_3}$$





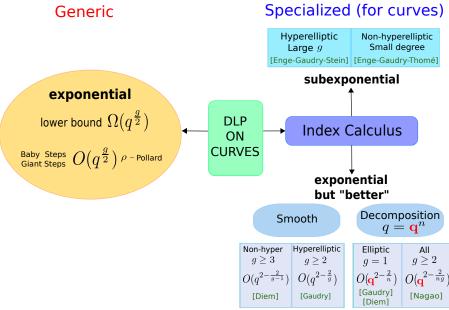




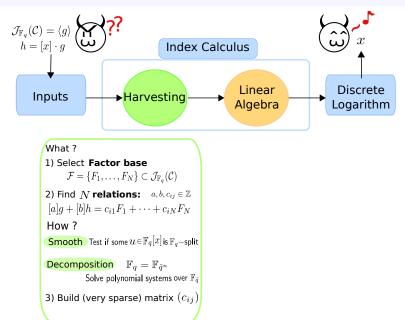


In crypto, the group is finite... But what if $Q \approx 2^{80}P$?

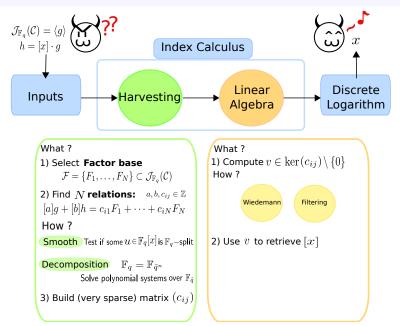
How to compute Discrete Logs in Jacobian varieties



About Index-Calculus



About Index-Calculus



About curves' security

How to increase security and keep a "reasonable" field ??

	Pros:	Cons:	Comments:
Higher genus	$\# \mathcal{J}(\mathcal{H}) pprox q^{g}$ more security	Expensive arithmetic	$g=2$ competitive with $g=1^{\dagger}$
Extension \mathbb{F}_{q^n}	$\# \mathcal{J}(\mathcal{H}) pprox q^{ng}$ better arithmetic same security	Decomposition attacks ††	attack practical only for very small g, n.

† [Gaudry'07, Gaudry-Lubicz'09, Renes&al.'16, ...] †† [Gaudry'09, Nagao'10, Diem'11]

About curves' security

How to increase security and keep a "reasonable" field ??

	Pros:	Cons:	Comments:
Higher genus	$\# \mathcal{J}(\mathcal{H}) pprox q^{g}$ more security	Expensive arithmetic	$g=2$ competitive with $g=1^{\dagger\dagger}$
Extension \mathbb{F}_{q^n}	$\# \mathcal{J}(\mathcal{H}) pprox q^{ng}$ better arithmetic same security	Decomposition attacks	make attack practical for more g, n.

Context and background

2 Contribution : improving smooth relations harvesting

- Old-school smooth harvesting
- New approach: Harvesting by Sieving
- Timings

3 Decomposition attacks on curves: state of the art

- 4 Contribution: summation Ideals
- 5 Contribution: degree reduction in even characteristic
- 6 Conclusion & perspectives

Old-school harvesting for smooth divisors

non-hyperelliptic case

C: C(x, y) = 0 non-hyperelliptic of genus $g \ge 3$. ([Diem] deg C = g + 1)

Factor base $\mathcal{F} = \{ P \in \mathcal{C}(\mathbb{F}_q) \}$ (rational points). To find one relation:

Non-hyperelliptic case [Diem'08]

- Select $P_1, P_2 \in \mathcal{F}$.
- Compute $F \in \mathbb{F}_q[x]$ describing $\mathcal{C} \cap$ the line (P_1P_2) .

• If F splits over \mathbb{F}_q ("div(P_1P_2) is smooth") Then relation. Else Try new P_1, P_2 .

deg
$$F = g - 1$$
 so probability : $\frac{1}{(g - 1)!}$

Old-school harvesting for smooth divisors

non-hyperelliptic case

C: C(x, y) = 0 non-hyperelliptic of genus $g \ge 3$. ([Diem] deg C = g + 1)

Factor base $\mathcal{F} = \{ P \in \mathcal{C}(\mathbb{F}_q) \}$ (rational points). To find one relation:

Non-hyperelliptic case [Diem'08]

- Select $P_1, P_2 \in \mathcal{F}$.
- Compute $F \in \mathbb{F}_q[x]$ describing $\mathcal{C} \cap$ the line (P_1P_2) .

• If F splits over \mathbb{F}_q ("div(P_1P_2) is smooth") Then relation. Else Try new P_1, P_2 .

deg
$$F = g - 1$$
 so probability : $\frac{1}{(g-1)!}$

"Free"

Cheap

$$O Costs \approx g^2 \log q$$

95% of time: checking if smooth or not

New approach: Harvesting by Sieving

V.Vitse, A.Wallet, Improved Sieving on Algebraic curves, LatinCrypt 2015

Sieving = time-memory trade-off.

Theory: Add one degree of freedom in decompositions.

Practice: Store results of cheap computations. Smoothness checks

Existing: [JouxVitse'12]: small extensions [SarkarSingh'14]: hyperelliptic only

Our contribution:

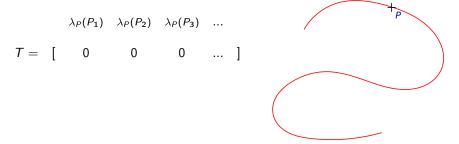
- Clarify formulation of [SarkharSing'14]
- Skip computations, better memory efficiency, no sorting.
- Adapt to all curve types and to other Index-Calculus variants.

C: C(x, y) = 0 non-hyperelliptic of genus $g \ge 3$. ([Diem] deg C = g + 1)

Factor base $\mathcal{F} = \{P, P_1, P_2, \dots\}$. First round of sieving: fix $P = (x_P, y_P)$.

Slope of a line through
$$P:\;\lambda_P(P_i)=rac{y_i-y_P}{x_i-x_P}$$
 (cheap!)

Loop over \mathcal{F} , compute $\lambda_P(P_i)$'s:



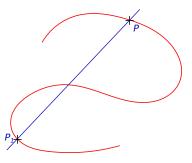
C: C(x, y) = 0 non-hyperelliptic of genus $g \ge 3$. ([Diem] deg C = g + 1)

Factor base $\mathcal{F} = \{P, P_1, P_2, \dots\}$. First round of sieving: fix $P = (x_P, y_P)$.

Slope of a line through
$$P:\;\lambda_P(P_i)=rac{y_i-y_P}{x_i-x_P}$$
 (cheap!)

Loop over \mathcal{F} , compute $\lambda_P(P_i)$'s:

 $\lambda_P(P_1) \quad \lambda_P(P_2) \quad \lambda_P(P_3) \quad \dots$ $T = \begin{bmatrix} 1 & 0 & 0 & \dots \end{bmatrix}$



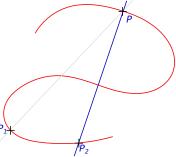
C: C(x, y) = 0 non-hyperelliptic of genus $g \ge 3$. ([Diem] deg C = g + 1)

Factor base $\mathcal{F} = \{P, P_1, P_2, \dots\}$. First round of sieving: fix $P = (x_P, y_P)$.

Slope of a line through
$$P:\;\lambda_P(P_i)=rac{y_i-y_P}{x_i-x_P}$$
 (cheap!)

Loop over \mathcal{F} , compute $\lambda_P(P_i)$'s:

 $\lambda_P(P_1)$ $\lambda_P(P_2)$ $\lambda_P(P_3)$... $T = \begin{bmatrix} 1 & 1 & 0 & ... \end{bmatrix}$



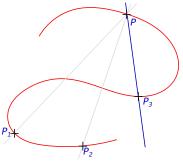
C: C(x, y) = 0 non-hyperelliptic of genus $g \ge 3$. ([Diem] deg C = g + 1)

Factor base $\mathcal{F} = \{P, P_1, P_2, \dots\}$. First round of sieving: fix $P = (x_P, y_P)$.

Slope of a line through
$$P:\;\lambda_P(P_i)=rac{y_i-y_P}{x_i-x_P}$$
 (cheap!)

Loop over \mathcal{F} , compute $\lambda_P(P_i)$'s:

 $\lambda_P(P_1)$ $\lambda_P(P_2)$ $\lambda_P(P_3)$... $T = \begin{bmatrix} 1 & 1 & 1 & \dots \end{bmatrix}$



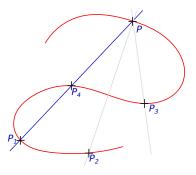
C: C(x, y) = 0 non-hyperelliptic of genus $g \ge 3$. ([Diem] deg C = g + 1)

Factor base $\mathcal{F} = \{P, P_1, P_2, \dots\}$. First round of sieving: fix $P = (x_P, y_P)$.

Slope of a line through *P*:
$$\lambda_P(P_i) = \frac{y_i - y_P}{x_i - x_P}$$
 (cheap!)

Loop over \mathcal{F} , compute $\lambda_P(P_i)$'s:

 $\lambda_P(P_1) \quad \lambda_P(P_2) \quad \lambda_P(P_3) \quad \dots$ $T = \begin{bmatrix} 2 & 1 & 1 & \dots \end{bmatrix}$ $\lambda_P(P_i) = \lambda_P(P_i) \Leftrightarrow P, P_i, P_i \text{ lined up.}$



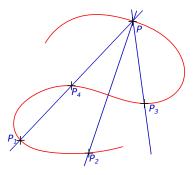
C: C(x, y) = 0 non-hyperelliptic of genus $g \ge 3$. ([Diem] deg C = g + 1)

Factor base $\mathcal{F} = \{P, P_1, P_2, \dots\}$. First round of sieving: fix $P = (x_P, y_P)$.

Slope of a line through *P*:
$$\lambda_P(P_i) = rac{y_i - y_P}{x_i - x_P}$$
 (cheap!)

Loop over \mathcal{F} , compute $\lambda_P(P_i)$'s:

 $\lambda_{P}(P_{1}) \quad \lambda_{P}(P_{2}) \quad \lambda_{P}(P_{3}) \quad \dots$ $T = \begin{bmatrix} 2 & 1 & 1 & \dots \end{bmatrix}$ $\lambda_{P}(P_{i}) = \lambda_{P}(P_{j}) \Leftrightarrow P, P_{i}, P_{j} \text{ lined up.}$ When $\mathbf{T}[\lambda_{i}] = \mathbf{g} \Rightarrow \text{Relation } !$



Analysis in the non-hyperelliptic case

For one loop:

- O(q) multiplications + O(q) storage. \Rightarrow Harvesting in $\approx g!q$.
- Expect $\approx \frac{\mathbf{q}}{\mathbf{g}!}$ relations.

Overall:

 $\mathsf{Old} ext{-school:} pprox (g-1)! q(g^2\log q)$

 \Rightarrow Factor $\approx g \log q$.

Relations management

- Loop on P uses all lines through P: no duplicate relations.
- How to handle the table ?
 - Counter list: factorize only splitting polynomials
 - e Hash tables & more memory: no factorization at all

Timings

q		78137	177167	823547	1594331
Genus 3, degree 4	Diem	11.5	27.5	135.1	266.1
	Sieving	3.6	9.3	46.9	94.6
	Ratio	3.1	2.9	2.8	2.8
Genus 4, degree 5	Diem	51.8	122.4	595.8	1174
	Sieving	15.5	40.1	195.1	387.6
	Ratio	3.3	3.1	3.1	3
Genus 5, degree 6	Diem	229.4	535.8	2581	5062
	Sieving	75.6	199	969.3	1909
	Ratio	3	2.6	2.6	2.6
Genus 7, degree 7	Diem	1382	3173	14990	29280
	Sieving	458.5	1199	5859	11510
	Ratio	3	2.6	2.5	2.5

Implementation in Magma; CPU Intel $^{\odot}$ Core i5@2.00Ghz processor. Time to collect 10000 relations, expressed in seconds.

D Context and background

2 Contribution : improving smooth relations harvesting

Observe the second s

- On elliptic curves [Diem], [Gaudry]
- On hyperelliptic curves [Nagao]
- 4 Contribution: summation Ideals
- 5 Contribution: degree reduction in even characteristic
- 6 Conclusion & perspectives

From now on, assume the base field is some \mathbb{F}_{q^n} , $n \geq 2$.

Point *m*-Decomposition Problem (PDP_m)

Let \mathcal{H} be a curve of genus g, $R \in \mathcal{J}(\mathcal{H})$ and $\mathcal{F} \subset \mathcal{J}(\mathcal{H})$.

Find, if possible, $D_1, \ldots, D_m \in \mathcal{F}$ s.t. $R = D_1 + \cdots + D_m$.

Decomposition harvesting = solving multiple PDP_m instance, for some m.

How can this be done ? Let's see on elliptic curves.

Summation polynomials for elliptic curves

Let *E* be an elliptic curve over \mathbb{F} with point at infinity \mathcal{O} , and $m \geq 3$.

Definition (Semaev)

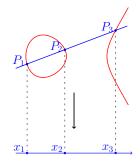
The m^{th} summation polynomial for E is $S_m \in \mathbb{F}[X_1, \ldots, X_m]$ generating the projection of the "group law ideal" over a set of coordinates:

$$S_m(x_1, \ldots, x_m) = 0 \Leftrightarrow \exists y_1, \ldots, y_m \in \overline{\mathbb{F}} \text{ s.t. } P_i = (x_i, y_i) \in E \text{ and}$$

 $P_1 + \cdots + P_m = \mathcal{O}.$

Projection of the group law on the x-line

 $P_1 + P_2 + P_3 = \mathcal{O}$ algebra $\downarrow \uparrow$ geometry $S_3(x_1, x_2, x_3) = 0$



Goal: Find decomposition $P_1 + \cdots + P_m$ of $R \in E(\mathbb{F}_q)$

geometry algebra $R = P_1 + \dots + P_m \iff S_{m+1}(x_R, x_1, \dots, x_m) = 0$

New goal: Find x_1, \ldots, x_m i.e. solve $S_{m+1}(x_R, X_1, \ldots, X_m)$

New goal: Solve $S_{m+1}(x_R, X_1, \ldots, X_m)$ Under-determined

New goal: Solve $S_{n+1}(x_R, X_1, \ldots, X_n)$ Under-determined

1. Base field is $\mathbb{F}_{q^n} = \operatorname{Span}_{\mathbb{F}_q}(1, \mathbf{t}, \dots, \mathbf{t}^{n-1})$. Let $\mathbf{m} = \mathbf{n}$, and $X_i = \sum_{i=1}^{n-1} X_{ij} \mathbf{t}^j$.

Then $\exists s_i \in \mathbb{F}_q[X_{1,0}, \dots, X_{n,n-1}]$ s.t.: $X_{ij} \in \mathbb{F}_q$

$$S_{n+1}(\mathbf{x}_{\mathbf{R}}, X_1, \ldots, X_n) = \sum_{i=0}^{n-1} s_i(X_{1,0}, \ldots, X_{n,n-1}) \mathbf{t}^i$$

New goal: Solve $S_{n+1}(x_R, X_1, \ldots, X_n)$ Under-determined

1. Base field is $\mathbb{F}_{q^n} = \operatorname{Span}_{\mathbb{F}_q}(1, \mathbf{t}, \dots, \mathbf{t^{n-1}})$. Let $\mathbf{m} = \mathbf{n}$, and $X_i = \sum_{i=1}^{n-1} X_{ij} \mathbf{t}^j$.

Then $\exists s_i \in \mathbb{F}_q[X_{1,0}, \dots, X_{n,n-1}]$ s.t.: $X_{ij} \in \mathbb{F}_q$

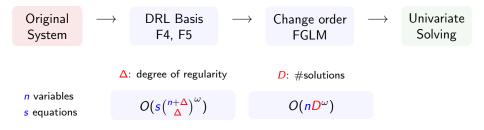
$$S_{n+1}(X_R, X_1, \ldots, X_n) = \sum_{i=0}^{n-1} s_i(X_{1,0}, \ldots, X_{n,n-1})t^{i}$$

2. Add constraints: look for P_i s.t. $x_i \in \mathbb{F}_q \iff X_{1,j} = \cdots = X_{n,j} = 0, \ j > 0$

$$S_{n+1}(\mathbf{x}_{\mathbf{R}}, \mathbf{X}_{1}, \dots, \mathbf{X}_{n}) = 0 \quad \Leftrightarrow \quad W = \begin{cases} s_{1}(\mathbf{X}_{1}, \dots, \mathbf{X}_{n}) = 0 \\ \vdots \\ s_{n}(\mathbf{X}_{1}, \dots, \mathbf{X}_{n}) = 0 \end{cases}$$

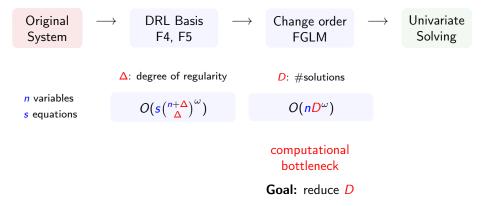
0-dimensional

Solving 0-dimensional systems with Gröbner Bases tools



 ω : lin. alg. exponent

Solving 0-dimensional systems with Gröbner Bases tools



About degrees of ideals

Let $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathcal{I} \subset \mathbb{F}[\mathbf{x}]$. HS : Hilbert Series $\deg \mathcal{I} = \#$ points "when cut by dim \mathcal{I} hyperplanes" $= HS_{\mathbb{F}[\mathbf{x}]/\mathcal{I}}(1)$ $= \dim_{\mathbb{F}} \mathbb{F}[\mathbf{x}]/\mathcal{I}$ when dim $\mathcal{I} = 0$.

With weights $\mathbf{w} = (w_1, \dots, w_n)$: $\deg_{\mathbf{w}} \mathcal{I} = \frac{\mathsf{HS}_{\mathbb{F}[\mathbf{x}]/\mathcal{I}}(1)}{\prod_{i=1}^n w_i}$ $= \dim_{\mathbb{F}} \mathbb{F}[\mathbf{x}]/\mathcal{I} \text{ when } \dim \mathcal{I} = 0.$

About degrees of ideals

Let $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathcal{I} \subset \mathbb{F}[\mathbf{x}]$. HS : Hilbert Series $\deg \mathcal{I} = \# \text{points "when cut by dim } \mathcal{I} \text{ hyperplanes"}$ $= \text{HS}_{\mathbb{F}[\mathbf{x}]/\mathcal{I}}(1)$ $= \dim_{\mathbb{F}} \mathbb{F}[\mathbf{x}]/\mathcal{I} \text{ when dim } \mathcal{I} = 0.$

With weights $\mathbf{w} = (w_1, \dots, w_n)$: $\deg_{\mathbf{w}} \mathcal{I} = \frac{\mathsf{HS}_{\mathbb{F}[\mathbf{x}]/\mathcal{I}}(1)}{\prod_{i=1}^n w_i}$ $= \dim_{\mathbb{F}} \mathbb{F}[\mathbf{x}]/\mathcal{I} \text{ when } \dim \mathcal{I} = 0.$

Proposition: With $\varphi(x_i) = x_i^{w_i}$, $\deg_{\mathbf{w}} \mathcal{I} = \frac{\deg \varphi(\mathcal{I})}{\prod_{i=1}^n w_i}$.

Corollary: If dim $\mathcal{I} = 0$, #solutions is divided by $\prod_{i=1}^{n} w_i$.

Degree of systems in PDP_m solving on elliptic curves

$$S_{n+1}(\mathbf{x}_{\mathbf{R}}, \mathbf{X}_1, \dots, \mathbf{X}_n) = 0 \quad \Leftrightarrow \quad W = \begin{cases} s_1(\mathbf{X}_1, \dots, \mathbf{X}_n) = 0 \\ \vdots \\ s_n(\mathbf{X}_1, \dots, \mathbf{X}_n) = 0 \end{cases}$$

 $\deg W = n! \, 2^{n(n-1)}$

FGLM runs in $O(\deg W^{\omega})$ + Probability for a relation: 1/n!

Known reduction: deg $W = 2^{n(n-1)} > 2^{(n-1)^2 \dagger} > 2^{(n-1)(n-2) \dagger \dagger}$

PDP_m solving for **higher genus**?

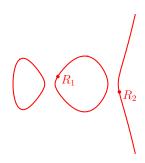
†: [Faugère-Gaudry-Huot-Renault]††: [Faugère-Huot-Joux-Renault-Vitse]

Geometric view of Decompositions

$$\begin{aligned} \mathcal{H} : y^2 + h_1(x)y &= h_0(x), \\ R &= \{R_1, \dots, R_g\} \in \mathcal{J}(\mathcal{H}), \ R_i = (x_{R_i}, y_{R_i}). \end{aligned}$$

Goal: $R = P_1 + \cdots + P_m$

Example if g = 2 and m = 4:



Geometric view of Decompositions

 $\begin{aligned} \mathcal{H}: y^2 + h_1(x)y &= h_0(x), \\ R &= \{R_1, \dots, R_g\} \in \mathcal{J}(\mathcal{H}), \ R_i = (x_{R_i}, y_{R_i}). \end{aligned}$

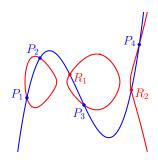
Goal: $R = P_1 + \cdots + P_m$

[Nagao] Find f(x, y) of lowest degree s.t.: $f(x_{R_i}, y_{R_i}) = f(x_i, y_i) = 0.$

Space of such f's:
$$\text{Span}(f_1, \dots, f_d)$$

$$f = \sum_{i=1}^d a_i f_i, \ \mathbf{a} = (a_1, \dots, a_d).$$

Example if g = 2 and m = 4:



Geometric view of Decompositions

$$\begin{aligned} \mathcal{H}: y^2 + h_1(x)y &= h_0(x), \\ R &= \{R_1, \dots, R_g\} \in \mathcal{J}(\mathcal{H}), \ R_i = (x_{R_i}, y_{R_i}). \end{aligned}$$

Goal: $R = P_1 + \cdots + P_m$

[Nagao] Find f(x, y) of lowest degree s.t.: $f(x_{R_i}, y_{R_i}) = f(x_i, y_i) = 0.$

Space of such f's: Span
$$(f_1, \ldots, f_d)$$

$$f = \sum_{i=1}^d a_i f_i, \ \mathbf{a} = (a_1, \ldots, a_d).$$

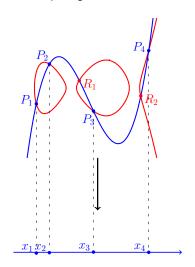
Decomposition Polynomial DP_R

$$DP_{R}(x) = \frac{\operatorname{Res}_{y}(\mathcal{H}, f)}{\prod(x - x_{R_{i}})} = x^{m} + \sum_{i=0}^{m-1} N_{i}(\mathbf{a}) x^{i}$$

If f describes a decomposition:

 $DP_{R}(x_{i}) = 0, \ 1 \leq i \leq m$

Example if g = 2 and m = 4:



Solving PDP_m for hyperelliptic curves [Nagao]

 \mathcal{H} of genus g, defined over \mathbb{F}_{q^n} , $R \in \mathcal{J}(\mathcal{H})$.

Goal: Find a s.t. $DP_{R}(x) = x^{m} + \sum_{i=0}^{m-1} N_{i}(\mathbf{a})x^{i}$ has root x_{1}, \dots, x_{m}

Solving PDP_m for hyperelliptic curves [Nagao]

 \mathcal{H} of genus g, defined over \mathbb{F}_{q^n} , $R \in \mathcal{J}(\mathcal{H})$.

Goal: Find a s.t.
$$DP_{R}(x) = x^{m} + \sum_{i=0}^{m-1} N_{i}(\mathbf{a})x^{i}$$
 has root $x_{1}, \ldots, x_{m} \in \mathbb{F}_{q}$

1. Add constraints: Look for P_i with $x_i \in \mathbb{F}_q$

 $\mathsf{All} \ \mathsf{x}_i \in \mathbb{F}_q \Rightarrow \ \mathsf{All} \ \mathsf{N}_i(\mathsf{a}) \in \mathbb{F}_q$

Solving PDP_m for hyperelliptic curves [Nagao]

 \mathcal{H} of genus g, defined over \mathbb{F}_{q^n} , $R \in \mathcal{J}(\mathcal{H})$.

Goal: Find **a** s.t. $DP_{R}(x) = x^{ng} + \sum_{i=0}^{ng-1} N_{i}(\mathbf{a})x^{i}$ has root x_{1}, \ldots, x_{ng}

1. Add constraints: Look for P_i with $x_i \in \mathbb{F}_q$

$$\mathsf{All} \ \mathsf{x}_i \in \mathbb{F}_q \Rightarrow \ \mathsf{All} \ \mathsf{N}_i(\mathsf{a}) \in \mathbb{F}_q$$

2. With $\mathbb{F}_{q^n} = \text{Span}_{\mathbb{F}_q}(1, \mathbf{t}, \dots, \mathbf{t^{n-1}})$, write $a_i = \sum a_{ij}\mathbf{t}^j$. Then $\exists N_{ij} \in \mathbb{F}_q[a_{1,0}, \dots, a_{d,n-1}]$ s.t.:

$$N_i(\mathbf{a}) = \sum_{j=0}^{n-1} N_{ij}(a_{1,0}, \dots, a_{d,n-1}) \mathbf{t}^j$$

3. $N_i(\mathbf{a}) \in \mathbb{F}_q \Leftrightarrow W = \{N_{ij}(a_{1,0}, \ldots, a_{d,n-1}) = 0 \text{ for } j > 0\}.$

Set $\mathbf{m} = \mathbf{ng}$, so that dim W = 0 and solve W.

Degree of systems

$$W = \{N_{ij}(a_{1,0}, \dots, a_{d,n-1}) = 0 \text{ for } j > 0\}$$

 $\deg W = 2^{n(n-1)g}$

FGLM runs in $O(\deg W^{\omega})$ + Probability for a relation: 1/(ng)!

+ No degree reduction known.ex: g = 2, n = 3+ Huge degree, lot of variables.deg = 4096, #vars = 12+ Very low probability of decomposition.proba = 1/720

 \Rightarrow very few practical cases (essentially $n(n-1)g \leq 12$).

Situation

Before this thesis:

Nagao: works for all genus. **But:** quickly untractable. ex: $g = 2, n = 3, k = \mathbb{F}_{2^{15}}$ Solving one PDP₆ instance ≈ 1500 sec. Finding one relation ≈ 12.5 days!

g = 1: Summation more efficient. But: only for g = 1!

Contribution:

• Introduce and analyze a Summation modelling for higher genus.

 \checkmark

• Reduce systems' degree in even characteristic.

Context and background

- 2 Contribution : improving smooth relations harvesting
- Occomposition attacks on curves: state of the art
- 4 Contribution: summation Ideals
- 5 Contribution: degree reduction in even characteristic
- 6 Conclusion & perspectives

Summation Variety

J-C. Faugère, A. Wallet, *The Point Decomposition Problem on Hyperelliptic curves*, DCC Journal [In revision]

 \mathcal{H} hyperelliptic curve over \mathbb{F} . $\mathbf{R} \in \mathcal{J}(\mathcal{H})$.

Goal: Describe $\mathcal{V}_{m,R} = \{ (P_1, \dots, P_m) : \sum_{i=1}^m (P_i) = R \}$ "Summation Variety"

Summation Variety

J-C. Faugère, A. Wallet, *The Point Decomposition Problem on Hyperelliptic curves*, DCC Journal [In revision]

 \mathcal{H} hyperelliptic curve over \mathbb{F} . $R \in \mathcal{J}(\mathcal{H})$.

Goal: Describe $\mathcal{V}_{m,R} = \{ (P_1, \dots, P_m) : \sum_{i=1}^m (P_i) = R \}$ "Summation Variety"

From [Nagao]:
$$DP_{\mathbf{R}}(x) = x^m + \sum_{i=0}^{m-1} N_i(\mathbf{a}) x^i$$
 (1)

 $R = (P_1) + \cdots + (P_m)$ iff $DP_R(x_i) = 0$ for all i. With $e_i = Sym_i(x_1, \ldots, x_m)$:

$$DP_{R}(x) = x^{m} + \sum_{i=0}^{m-1} (-1)^{m-i} e_{m-i} x^{i}$$
(2)

Equations (1) and (2) give:

$$\mathcal{I}_{m,R} = \begin{cases} N_{m-1}(\mathbf{a}) = e_1, \\ \vdots \\ N_0(\mathbf{a}) = (-1)^{m+1} e_m \end{cases}$$

Summation ideals

Theorem

Let $\mathcal{I}_{m,R} \subset \mathbb{F}[\mathbf{x},\mathbf{a}]$ be the ideal defined previously. Then $\mathcal{V}_{m,R} = V(\mathcal{I}_{m,R})$.

Conditions in x : eliminate a

Geometry projection onto x

Algebra Gröbner basis of $\mathcal{I}_{m,\mathbf{R}} \cap \mathbb{F}[\mathbf{x}]$.

*m*th Summation Ideals

For $m \geq g + 1$, the **m**th summation ideal for \mathcal{H} is $\mathcal{I}_{m,R} \cap \mathbb{F}[\mathbf{x}]$.

If $\langle S_{m,R} \rangle = \mathcal{I}_{m,R} \cap \mathbb{F}[\mathbf{x}]$, then $S_{m,R}$ is called a set of m-summation polynomials, or a mth summation set.

Properties of Summation Ideals

 $\mathbb{S}_{m,R}(\mathbf{x})$: evaluation of all $S \in \mathbb{S}_{m,R}$ at \mathbf{x} . \mathcal{H} hyperelliptic curve over \mathbb{F} .

Summation property

$$\mathbb{S}_{m,R}(\mathbf{x}) = 0 \Leftrightarrow \exists y_1, \dots, y_m \in \overline{\mathbb{F}} \text{ s.t. } P_i = (x_i, y_i) \in \mathcal{H} \text{ and}$$

 $(P_1) + \dots + (P_m) = R.$

Invariance by permutations

 $\langle \mathbb{S}_{m,R} \rangle^{\mathfrak{S}_m} = \langle \mathbb{S}_{m,R} \rangle$, and the modelling computes a symmetrized summation set.

Let $\mathbf{V} = V(\mathcal{I}_{m,R} \cap \mathbb{F}[\mathbf{e}])$ (symmetrized).

 $\begin{array}{l} \mathsf{Codim}\, \mathbf{V} = g \quad \Rightarrow \quad \# \mathbb{S}_{m, R} \geq g \\ & \text{ in practice, } \# \mathbb{S}_{m, R} \gg g \end{array}$

Heuristic: deg $V = 2^{m-2g}$ [Diem]: proven for g = 1

New PDP_m solving for hyperelliptic curve

Input: \mathcal{H} def. over \mathbb{F}_{q^n} , $R \in \mathcal{J}(\mathcal{H})$, $\mathcal{F} = \{(P) \in \mathcal{J}(\mathcal{H}) : x(P) \in \mathbb{F}_q\}$.

Goal: Find decomposition $\mathbf{R} = (P_1) + \cdots + (P_{ng}), P_i \in \mathcal{F}$.

1. Compute ng^{th} Summation Set $\mathbb{S}_{ng,R}$.

$$R = P_1 + \cdots + P_{ng} \Leftrightarrow \mathbb{S}_{ng,R}(x_1, \ldots, x_{ng}) = 0.$$

New PDP_m solving for hyperelliptic curve

Input: \mathcal{H} def. over \mathbb{F}_{q^n} , $\mathbb{R} \in \mathcal{J}(\mathcal{H})$, $\mathcal{F} = \{(P) \in \mathcal{J}(\mathcal{H}) : x(P) \in \mathbb{F}_q\}$.

Goal: Find decomposition $\mathbf{R} = (P_1) + \cdots + (P_{ng}), P_i \in \mathcal{F}.$

1. Compute ng^{th} Summation Set $\mathbb{S}_{ng,\mathbb{R}}$.

$$R = P_1 + \cdots + P_{ng} \Leftrightarrow \mathbb{S}_{ng,R}(x_1,\ldots,x_{ng}) = 0.$$

2. $\mathbb{S}_{ng,R} = \{S_1, \dots, S_r\}$ and $\mathbb{F}_{q^n} = \operatorname{Span}_{\mathbb{F}_q}(1, \mathbf{t}, \dots, \mathbf{t}^{n-1})$. $\exists s_{ij} \in \mathbb{F}_q[X_1, \dots, X_{ng}]$ s.t.:

$$\forall 1 \leq i \leq r, \ S_i(x_1,\ldots,x_{ng}) = \sum_{i=0}^{n-1} s_{ij}(x_1,\ldots,x_{ng}) \mathbf{t}^j.$$

3.
$$\mathbb{S}_{ng,R}(x_1,\ldots,x_{ng}) = 0 \quad \Leftrightarrow \quad W = \begin{cases} s_{11}(x_1,\ldots,x_{ng}) = 0 \\ \vdots \\ s_{rn}(x_1,\ldots,x_{ng}) = 0 \end{cases}$$

Analysis, comparison with Nagao

$$\mathbb{S}_{ng,\mathbf{R}}(x_1,\ldots,x_{ng}) = 0 \quad \Leftrightarrow \quad W = \begin{cases} s_{11}(x_1,\ldots,x_{ng}) = 0 \\ \vdots \\ s_{rn}(x_1,\ldots,x_{ng}) = 0 \end{cases}$$

Let $\mathbf{V} = V(\mathcal{I}_{m,\mathbf{R}} \cap \mathbb{F}[\mathbf{e}])$ (symmetrized).

•
$$r \ge g = \operatorname{Codim} \mathbf{V} \Rightarrow \dim W = 0.$$

•
$$m = ng \Rightarrow \deg \mathbf{V} = 2^{(n-1)g}$$

• $W \subset W_n(V)$ - Weil Restriction of V over \mathbb{F}_q : deg $W_n(V) = (\deg V)^n$.

Analysis, comparison with Nagao

$$\mathbb{S}_{ng,\mathbf{R}}(x_1,\ldots,x_{ng})=0 \quad \Leftrightarrow \quad W=\begin{cases} s_{11}(x_1,\ldots,x_{ng})=0\\ \vdots\\ s_{rn}(x_1,\ldots,x_{ng})=0 \end{cases}$$

Let $\mathbf{V} = V(\mathcal{I}_{m,\mathbf{R}} \cap \mathbb{F}[\mathbf{e}])$ (symmetrized).

•
$$r \ge g = \operatorname{Codim} \mathbf{V} \Rightarrow \dim W = 0.$$

•
$$m = ng \Rightarrow \deg \mathbf{V} = 2^{(n-1)g}$$

• $W \subset W_n(\mathbf{V})$ - Weil Restriction of \mathbf{V} over \mathbb{F}_q : deg $W_n(\mathbf{V}) = (\deg \mathbf{V})^n$.

$$\Rightarrow \deg W = (\deg \mathbf{V})^n = \mathbf{2^{n(n-1)g}}.$$

- Same degree as Nago \Rightarrow Same practical cases...
- Less variables but need to compute an elimination basis.

The two modellings are "equivalent".

Context and background

2 Contribution : improving smooth relations harvesting

3 Decomposition attacks on curves: state of the art

4 Contribution: summation Ideals

5 Contribution: degree reduction in even characteristic

- Square coefficients of DP_R
- Degree reduction for Nagao's approach
- Degree reduction for summation approach
- Simulation of a realistic DL computation

6 Conclusion & perspectives

Structure of DP_R in even characteristic

J-C. Faugère, A. Wallet, *The Point Decomposition Problem on hyperelliptic curves*, DCC Journal [In revision]

$$\begin{aligned} \mathcal{H} : y^2 + h_1(x)y &= h_0(x) \text{ hyperelliptic of genus } g \text{ over } \mathbb{F}_{2^{kn}} \\ \text{Fix } & \mathcal{R} \in \mathcal{J}(\mathcal{H}) \text{ and } DP_{\mathcal{R}}(x) = x^m + \sum_{i=0}^{m-1} N_i(\mathbf{a}) x^i. \end{aligned}$$

Square coefficients

Let
$$h_1(x) = \sum_{i=t}^{d} \alpha_i x^i$$
, and let $\mathbf{L} = \mathbf{d} - \mathbf{t}$ be the **length** of $h_1(x)$.
There are exactly $\mathbf{g} - \mathbf{L} + \mathbf{1}$ square coefficients among the $N_i(\mathbf{a})$.

In Nagao's approach: $N_i(\mathbf{a})$ square $\Rightarrow \sqrt{N_{ij}(\mathbf{\bar{a}})} = 0$ **Replaced by linear equations** In Summation approach: Induces weight system on variables. Weighted degree is smaller.

Degree reduction for Nagao's approach over $\mathbb{F}_{2^{kn}}$

 $\mathcal{H}: y^2 + h_1(x)y = h_0(x)$ hyperelliptic of genus g over $\mathbb{F}_{2^{kn}}$ With additional reductions:

Theorem

Let $h_1(x) = \sum_{i=t}^{d} \alpha_i x^i$, and let $\mathbf{L} = \mathbf{d} - \mathbf{t}$. Solving a PDP_{ng} instance on \mathcal{H} can be done by solving a system of degree:

$$d_{new} = 2^{(n-1)((n-1)g+L-1)}$$

From $\mathbf{d}_{old} = \mathbf{2}^{(n-1)ng}$, we obtain:

(tight bounds)
$$2^{(n-1)((n-1)g-1)} \leq d_{new} \leq 2^{(n-1)(ng-1)}$$

factor $2^{(n-1)(g+1)} = \frac{d_{old}}{d_{new}} = 2^{n-1}$

Degree reduction for Nagao's approach over $\mathbb{F}_{2^{kn}}$

 $\mathcal{H}: y^2 + h_1(x)y = h_0(x)$ hyperelliptic of genus g over $\mathbb{F}_{2^{kn}}$ With additional reductions:

Theorem

Let $h_1(x) = \sum_{i=t}^{d} \alpha_i x^i$, and let $\mathbf{L} = \mathbf{d} - \mathbf{t}$. Solving a PDP_{ng} instance on \mathcal{H} can be done by solving a system of degree:

$$d_{new} = 2^{(n-1)((n-1)g+L-1)}$$

From $\mathbf{d}_{old} = \mathbf{2}^{(n-1)ng}$, we obtain:

(tight bounds) $2^{(n-1)((n-1)g-1)} \leq d_{new} \leq 2^{(n-1)(ng-1)}$

Example: g = 2, n = 3. Type II curve $y^2 + xy = x^5 + ax^3 + bx^2 + c$ over $\mathbb{F}_{2^{45}}$ Solving over $\mathbb{F}_{2^{15}}$ with Magma 2.19:

•
$$d_{old} = 2^{12} = 4096$$
. Time: ≈ 1500 s.
• $d_{new} = 2^6 = 64$. Time: ≈ 0.029 s

Square equations and weights: degree reduction

Let k = #squared $N_i(a)$. Renumber s.t.: Jared $N_i(\mathbf{a})$. Renumber S.L. $DP_R(x) = x^m + \sum_{i=m-k}^{m-1} \tilde{N}_{m-i}^2(\mathbf{a}) x^i + \sum_{i=0}^{m-k-1} N_{m-i}(\mathbf{a}) x^i.$ $\tilde{N}_i^2(\mathbf{a}) = e_i$ $\mathcal{J}_{m,R}:$ $\begin{cases}
\tilde{N}_i(\mathbf{a}) = e_i \\
N_i(\mathbf{a}) = e_i
\end{cases}$ $\mathcal{I}_{m,R}:$ $\begin{cases}
\tilde{N}_i^2(\mathbf{a}) = e_i \\
N_i(\mathbf{a}) = e_i
\end{cases}$ $\mathcal{I}_{e} = \mathcal{I}_{m,R} \cap \mathbb{F}[\mathbf{e}]$ $\mathcal{J}_e = \mathcal{J}_{m,R} \cap \mathbb{F}[\mathbf{e}]$

Square equations and weights: degree reduction

Let k = #squared $N_i(\mathbf{a})$. Renumber s.t.: $DP_{R}(x) = x^{m} + \sum_{i=m-k}^{m-1} \tilde{N}_{m-i}^{2}(\mathbf{a})x^{i} + \sum_{i=0}^{m-k-1} N_{m-i}(\mathbf{a})x^{i}.$ $\mathcal{J}_{m,R}: \begin{cases} \tilde{N}_i(\mathbf{a}) = e_i \\ \\ N_i(\mathbf{a}) = e_i \end{cases}$ $\mathcal{I}_{m,R}: \begin{cases} \tilde{N}_i^2(\mathbf{a}) = e_i \\ \\ N_i(\mathbf{a}) = e_i \end{cases}$ $\mathcal{I}_{e} = \mathcal{I}_{m,R} \cap \mathbb{F}[\mathbf{e}]$

Theorem

With $\varphi(e_i) = e_i^{w_i}, \mathcal{I}_e$ is the radical of $\varphi(\mathcal{J}_e)$.

Applications: Find points in $V(\mathcal{J}_e)$ instead of $V(\mathcal{I}_e)$. "Weighted degree of \mathcal{J}_e is smaller than deg \mathcal{I}_e " Degree reduction in summation approach over $\mathbb{F}_{2^{kn}},$ step 1

Let $\mathbf{V}_J = V(\mathcal{J}_e)$, $\mathbf{V}_I = V(\mathcal{I}_e)$.

Theorem

There is a constant C depending on h_1 s.t. $\deg_{w}(\mathbf{V}_J) = C \cdot \frac{\deg \mathbf{V}_I}{2^{m-g+L}}$.

With $\mathbb{F}_{2^{kn}} = \operatorname{Span}_{\mathbb{F}_{2^k}}(1, \mathbf{t}, \dots, \mathbf{t}^{n-1})$, write $\mathbf{e}_i = \sum_{i=0}^{n-1} \mathbf{e}_{ij} \mathbf{t}^j$.

weight $\mathbf{e}_i = 2 \Rightarrow$ weight $\mathbf{e}_{ij} = 2 \Rightarrow \deg \mathcal{W}_n(\mathbf{V}_*) \cap V(\mathbf{e}_{ij}) = 2 \deg \mathcal{W}_n(\mathbf{V}_*)$

Degree reduction in summation approach over $\mathbb{F}_{2^{kn}}$, step 1

Let $\mathbf{V}_J = V(\mathcal{J}_e)$, $\mathbf{V}_I = V(\mathcal{I}_e)$.

Theorem

There is a constant C depending on h_1 s.t. $\deg_{\mathbf{w}}(\mathbf{V}_J) = C \cdot \frac{\deg \mathbf{V}_I}{2^{m-g+L}}$.

With
$$\mathbb{F}_{2^{kn}} = \operatorname{Span}_{\mathbb{F}_{2^k}}(1, \mathbf{t}, \dots, \mathbf{t^{n-1}})$$
, write $e_i = \sum_{i=0}^{n-1} e_{ij} \mathbf{t}^j$.

weight
$$\mathbf{e}_i = 2 \Rightarrow$$
 weight $\mathbf{e}_{ij} = 2 \Rightarrow \deg \mathcal{W}_n(\mathbf{V}_*) \cap V(\mathbf{e}_{ij}) = 2 \deg \mathcal{W}_n(\mathbf{V}_*)$

Let
$$W = \mathcal{W}_n(\mathbf{V}_J) \cap \bigcap_{i,j \ge 1} V(e_{ij})$$
. Experimentally, $C = 2^L$.

Corollary: In PDP_{ng} instances (m = ng), with L = length of h_1 :

$$\deg W = C^{n} \cdot \frac{d_{old}}{2^{(n-1)(g-L)+nL}} = \frac{d_{old}}{2^{(n-1)(g-L)}}$$

Degree reduction in summation approach, step 2

 $\mathcal{H}: y^2 + h_1(x)y = h_0(x)$ hyperelliptic of genus g over $\mathbb{F}_{2^{kn}}$ With additional reductions:

Theorem

Let $h_1(x) = \sum_{i=t}^{d} \alpha_i x^i$, and let $\mathbf{L} = \mathbf{d} - \mathbf{t}$. Solving a PDP_{ng} instance on \mathcal{H} can be done by solving a system of degree

$$d_{new} = 2^{(n-1)((n-1)g+L-1)}$$

From $\mathbf{d}_{old} = \mathbf{2}^{(n-1)ng}$:

(tight bounds)
$$2^{(n-1)((n-1)g-1)} \leq d_{new} \leq 2^{(n-1)(ng-1)}$$

factor $2^{(n-1)(g+1)} \qquad \frac{d_{old}}{d_{new}} \qquad 2^{n-1}$

Degree reduction in summation approach, step 2

 $\mathcal{H}: y^2 + h_1(x)y = h_0(x)$ hyperelliptic of genus g over $\mathbb{F}_{2^{kn}}$ With additional reductions:

Theorem

Let $h_1(x) = \sum_{i=t}^{d} \alpha_i x^i$, and let $\mathbf{L} = \mathbf{d} - \mathbf{t}$. Solving a PDP_{ng} instance on \mathcal{H} can be done by solving a system of degree

$$d_{new} = 2^{(n-1)((n-1)g+L-1)}$$

From $\mathbf{d}_{old} = \mathbf{2}^{(n-1)ng}$:

(tight bounds) $2^{(n-1)((n-1)g-1)} \leq d_{\text{new}} \leq 2^{(n-1)(ng-1)}$

What is hidden:

- Best reduction achieved for less types of curves.
- Need to find curves isomorphisms to obtain same reductions as in Nagao's.

Comparison of approaches after reduction

	Best reduction	Implementation	Best running time [†]
Nagao	immediate when $\mathbf{L} = 0$	Easy	pprox 0.029s.
Summation	needs $\mathbf{L} = 0$ and additional work	Tricky	pprox 0.34s.

Winner for a realistic computation: Nagao's approach.

†: for binary genus 2 curves over $\mathbb{F}_{2^{45}}$

Simulation of a realistic DL computation

Parameters:

- $\mathcal{H}: y^2 + xy = x^5 + f_3 x^3 + x^2 x + f_0, \ g = 2.$
- Field $K = \mathbb{F}_{2^{93}}, n = 3$.
- $\#\mathcal{J}(\mathcal{H}) = 2 \times 3 \times p$, $\log p = 184, p$ prime.

Modelling for PDP₆ instances:

- Nagao with Degree reduction.
- Ideals have degree 64, field: $\mathbb{F}_{2^{31}}$.

 \Rightarrow Generic bound $\approx 2^{92}.$

Dedicated implementation:

- DRL Basis: code generating techniques and F5 alg.
- Change-ordering: Sparse FGLM [Faugère-Mou].

Simulation of a realistic DL computation

Parameters:

- $\mathcal{H}: y^2 + xy = x^5 + f_3 x^3 + x^2 x + f_0, \ g = 2.$
- Field $K = \mathbb{F}_{2^{93}}, n = 3$.
- $\#\mathcal{J}(\mathcal{H}) = 2 \times 3 \times p$, $\log p = 184, p$ prime.

Modelling for PDP₆ instances:

- Nagao with Degree reduction.
- Ideals have degree 64, field: $\mathbb{F}_{2^{31}}$.

Solving one PDP₆ instance:

DRL Basis: $3.87 \cdot 10^{-4}$ sec.

- + Sparse-FGLM: $5.93 \cdot 10^{-4}$ sec.
- + Univariate Solving: $2.22 \cdot 10^{-3}$ sec.

 $\approx 3.2\cdot 10^{-3} \text{sec.}$

Finding one relation:

 \times (ng)! = 720 in avg.

Avg. total time \approx 2.3 sec.

 \Rightarrow Generic bound $\approx 2^{92}.$

Dedicated implementation:

- DRL Basis: code generating techniques and F5 alg.
- Change-ordering: Sparse FGLM [Faugère-Mou].

Parallel Harvesting:

 $\approx 2^{31}$ relations with 8000 cores: $\approx \textrm{7 days}. \label{eq:asymptotic}$

(Before: estimation in years...)

Context and background

- 2 Contribution : improving smooth relations harvesting
- Observation attacks on curves: state of the art
- Ontribution: summation Ideals
- 5 Contribution: degree reduction in even characteristic
- 6 Conclusion & perspectives

General Topic: Index-Calculus over curves with genus $g \ge 2$

Objectives:

- Focus on the harvesting phase
- Sharpen complexity bounds

Methods:

- Analyze algebraic properties
- Exploit field's structure (characteristic, subfields, ...)

- -> Improve existing methods Design new ones
- -> Restrict set of practical parameters Highlight potential weaknesses

Tools:

- Computer Algebra (Magma, Maple)
- Efficient Gröbner Bases libraries (Maple/FGb)

Conclusion

Results:

- > Improved harvesting phase in "Smooth" search
- Introduced/analyzed Summation ideals for higher genus
 Not presented: Less efficient definition
 Obstruction to incremental computations
- Reduced degree of PDP_m systems in even characteristic
 Not presented: Frobenius action over parametrizations in general
 Reductions not linked to squares & technicalities.
- > Made practical harvesting on a meaningful genus 2 curve

Side results:

- + Nagao > Summation in characteristic 2.
- + Experimentally, Nagao > Summation in characteristic *p*.

Limits:

- No reduction in characteristic p > 2
- Symmetries of Summation variety unclear
- Can't exploit Jacobian automorphisms (2-torsion,...).

Generalization using Kummer Varieties

> Give theoretical framework of "Summation Polynomials" for Abelian Varieties.

If g = **2:** group law well-understood with **theta functions**. [Gaudry'07], [Gaudry-Lubicz'09], [Lubicz-Robert'15], [Costello & al.'16], ...

- > Explicit "Jacobian" Summation Polynomials using theta arithmetic.
- > Design new Decomposition Attack.

Exploiting Symmetries: if g = 1, degree reduction achieved with 2-torsion.

? Can we exploit automorphisms in the Kummer variety ?

Thank you for your attention !

