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Question: How can Alice and Bob share this common key ?

Solution: Use the Discrete Logarithm Problem !
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What is the Discrete Logarithm Problem

Discrete Logarithm Problem (DLP)
(G ,+) abelian group. Given g , h ∈ G , find (if it exists) x ∈ Z s.t.:

[x ] · g = h.

Is this a hard problem ?

Diffie-Hellman Key Exchange
Alice Bob

[a]g = A B = [b]g
A //
B

oo
key = [a]B key = [b]A

= [ab]g = [ab]g

Groups used:

F×q
elliptic curves E (Fq)

Jacobian of algebraic curves
JFq (C)

Several other protocols: El-Gamal, DSA/ECDSA, Pairings...
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Algebraic curves and Jacobian varieties

C : C (x , y) = 0, for some polynomial C , algebraic curve of genus g .

g = 1: elliptic: y2 = x3 + Ax + B,A,B ∈ Fq

g = 2: hyperelliptic: y2 + h1(x)y = x5 + . . .

h1 ∈ Fq[x ], deg h1 ≤ 2

g ≥ 3: hyperelliptic: y2 + h1(x)y = x2g+1 + . . .

h1 ∈ Fq[x ], deg h1 ≤ g

Non-hyperelliptic (all the rest).

Divisors: formal sum D =
∑

niPi , ni ∈ Z,Pi ∈ C
Degree: degD =

∑
ni

Div0 = {D s.t. degD = 0}

Function on C: rational fraction f (x , y)

Principal divisor div f : zeros (ni > 0) + poles (ni < 0)
{Principal divisors } = Prin(C) 6 Div0

Jacobian Variety
as Class group:

Jac(C) = Div0(C) /Prin(C)

as Algebraic Variety:

Jac(C) = Cg/Sg
Group law expressed by rational functions
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Jacobian elements and group law

C : C (x , y) = 0 algebraic curve of genus g , D ∈ Div0(C), O ∈ C.

From Riemann-Roch theorem: ∃ P1, . . . ,Pk ∈ C , k ≤ g s.t.:

D ∼
k∑

i=1
(Pi ), where (Pi ) = Pi −O.
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From Riemann-Roch theorem: ∃ P1, . . . ,Pk ∈ C , k ≤ g s.t.:

D ∼
k∑

i=1
(Pi ), where (Pi ) = Pi −O.

Example with g = 1 - elliptic curve E : y2 = x3 + ax + b

Line through P1,P2 : f (x , y) = 0.

⇒ div f = (P1) + (P2)+(P3).

⇒ in J (E ) : (P1) + (P2)+(P3) = O.

Define:

(P1) + (P2) := −(P3).

P1

P2

P3

−P3
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C : C (x , y) = 0 algebraic curve of genus g , D ∈ Div0(C), O ∈ C.

From Riemann-Roch theorem: ∃ P1, . . . ,Pk ∈ C , k ≤ g s.t.:

D ∼
k∑

i=1
(Pi ), where (Pi ) = Pi −O.

Example with g = 2 - hyperelliptic curve H : y2 = x5 + ax3 + bx2 + cx + d

Cubic through P1, . . . ,P4 : f (x , y) = 0

⇒ div f = (P1) + · · ·+ (P4)+(P5) + (P6)

⇒ in J (H) : (P1)+ · · ·+(P6) = O

Define:

(P1) + (P2)︸ ︷︷ ︸ + (P3) + (P4)︸ ︷︷ ︸ = (−P5) + (−P6)︸ ︷︷ ︸
D1 + D2 := D3

P1

P6

P3

P5

P2

P4−P6

−P5
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A discrete logarithm on an elliptic curve

P

Q

In crypto, the group is finite... But what if Q≈ 280P ?
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How to compute Discrete Logs in Jacobian varieties

DLP
ON

CURVES

Index Calculus

Specialized (for curves)Generic

lower bound

exponential

Baby  Steps
Giant Steps

Pollard

subexponential

exponential
but "better"

Smooth

Non-hyper

[Diem] [Gaudry]

Hyperelliptic

[Nagao][Gaudry]
[Diem]

Elliptic All

Decomposition

Hyperelliptic
Large 

[Enge-Gaudry-Stein]

Non-hyperelliptic
Small degree

[Enge-Gaudry-Thomé]
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About Index-Calculus

Linear
Algebra

Harvesting

Index Calculus

Discrete
Logarithm

1) Select Factor base

2) Find relations:

3) Build (very sparse) matrix

Smooth

Decomposition

What ?

1) Compute

2) Use to retrieve

How ?

Wiedemann Filtering

3
>

- - ?? 3

Inputs

^^

~

What ?

How ?
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About curves’ security

How to increase security and keep a “reasonable” field ??

Higher genus

Extension Fqn

Pros:

#J (H) ≈ qg

more security

#J (H) ≈ qng

better arithmetic
same security

Cons:

Expensive
arithmetic

Decomposition
attacks††

Comments:

g = 2 competitive
with g = 1†

attack practical
only for very small
g , n.

† [Gaudry’07, Gaudry-Lubicz’09, Renes&al.’16, ...]
†† [Gaudry’09, Nagao’10, Diem’11]
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Old-school harvesting for smooth divisors
non-hyperelliptic case

C : C (x , y) = 0 non-hyperelliptic of genus g ≥ 3. ([Diem] degC = g + 1)

Factor base F = {P ∈ C(Fq) } (rational points). To find one relation:

Non-hyperelliptic case [Diem’08]
1 Select P1,P2 ∈ F .
2 Compute F ∈ Fq[x ] describing
C ∩ the line (P1P2).

3 If F splits over Fq (“div(P1P2) is smooth”)
Then relation.
Else Try new P1,P2.

deg F = g − 1 so probability :
1

(g − 1)!

1 “Free”
2 Cheap

3 Costs ≈ g2 log q

95% of time: checking if
smooth or not

and duplicate relations
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New approach: Harvesting by Sieving

V.Vitse, A.Wallet, Improved Sieving on Algebraic curves, LatinCrypt 2015

Sieving = time-memory trade-off.
Theory: Add one degree of freedom in decompositions.
Practice: Store results of cheap computations. Smoothness checks

Existing:
[JouxVitse’12]: small extensions
[SarkarSingh’14]: hyperelliptic only

−→
−→

Cons:
different context
sort, backtracking, hyperelliptic only

Our contribution:

Clarify formulation of [SarkharSing’14]
Skip computations, better memory efficiency, no sorting.
Adapt to all curve types and to other Index-Calculus variants.
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Illustration for non-hyperelliptic curves

C : C (x , y) = 0 non-hyperelliptic of genus g ≥ 3. ([Diem] degC = g + 1)

Factor base F = {P,P1,P2, . . . }. First round of sieving: fix P = (xP , yP).

Slope of a line through P: λP(Pi ) =
yi − yP
xi − xP

(cheap!)

Loop over F , compute λP(Pi )’s:

λP(P1) λP(P2) λP(P3) ...

T = [ 0 0 0 ... ]

λP(Pi ) = λP(Pj)⇔ P,Pi ,Pj lined up.

When T[λi] = g⇒ Relation !

P

P2

P4

P3
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Analysis in the non-hyperelliptic case

For one loop:

O(q) multiplications + O(q) storage.
Expect ≈ q

g! relations.
⇒ Harvesting in ≈ g!q.

Overall:
Old-school: ≈ (g − 1)!q(g2 log q) ⇒ Factor ≈ g log q.

Relations management
Loop on P uses all lines through P: no duplicate relations.
How to handle the table ?

1 Counter list: factorize only splitting polynomials
2 Hash tables & more memory: no factorization at all
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Timings

q 78137 177167 823547 1594331

Genus 3,
degree 4

Diem 11.5 27.5 135.1 266.1

Sieving 3.6 9.3 46.9 94.6

Ratio 3.1 2.9 2.8 2.8

Genus 4,
degree 5

Diem 51.8 122.4 595.8 1174

Sieving 15.5 40.1 195.1 387.6

Ratio 3.3 3.1 3.1 3

Genus 5,
degree 6

Diem 229.4 535.8 2581 5062

Sieving 75.6 199 969.3 1909

Ratio 3 2.6 2.6 2.6

Genus 7,
degree 7

Diem 1382 3173 14990 29280

Sieving 458.5 1199 5859 11510

Ratio 3 2.6 2.5 2.5

Implementation in Magma; CPU Intel c© Core i5@2.00Ghz processor.
Time to collect 10000 relations, expressed in seconds.
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1 Context and background

2 Contribution : improving smooth relations harvesting

3 Decomposition attacks on curves: state of the art
On elliptic curves [Diem], [Gaudry]
On hyperelliptic curves [Nagao]

4 Contribution: summation Ideals

5 Contribution: degree reduction in even characteristic

6 Conclusion & perspectives
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What are Decomposition attacks?

From now on, assume the base field is some Fqn , n ≥ 2.

Point m-Decomposition Problem (PDPm)
Let H be a curve of genus g , R ∈ J (H) and F ⊂ J (H).

Find, if possible, D1, . . . ,Dm ∈ F s.t. R = D1 + · · ·+ Dm.

Decomposition harvesting = solving multiple PDPm instance, for some m.

How can this be done ? Let’s see on elliptic curves.
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Summation polynomials for elliptic curves

Let E be an elliptic curve over F with point at infinity O, and m ≥ 3.

Definition (Semaev)
The mth summation polynomial for E is Sm ∈ F[X1, . . . ,Xm] generating the
projection of the “group law ideal” over a set of coordinates:

Sm(x1, . . . , xm) = 0⇔ ∃ y1, . . . , ym ∈ F s.t. Pi = (xi , yi ) ∈ E and
P1 + · · ·+ Pm = O.

Projection of the group law on the x-line

P1 + P2 + P3 = O
algebra ↓ ↑ geometry

S3(x1, x2, x3) = 0

P1

P2

P3

x2 x3x1
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Solving PDPm for elliptic curves [Diem], [Gaudry]

Goal: Find decomposition P1 + · · ·+ Pm of R ∈ E (Fq)

geometry algebra
R = P1 + · · ·+ Pm ⇔ Sm+1(xR , x1, . . . , xm) = 0

New goal: Find x1, . . . , xm i.e. solve Sm+1(xR ,X1, . . . ,Xm)

1. Base field is Fqn = SpanFq
(1, t, . . . , tn−1). Let m = n, and Xi =

n−1∑
i=1

Xijtj.

Then ∃ si ∈ Fq[X1,0, . . . ,Xn,n−1] s.t.: Xij ∈ Fq

Sn+1(xR ,X1, . . . ,Xn) =
n−1∑
i=0

si (X1,0, . . . ,Xn,n−1)tj

2. Add constraints: look for Pi s.t. xi ∈ Fq ⇔ X1,j = · · · = Xn,j = 0, j > 0

Sn+1(xR ,X1, . . . ,Xn) = 0 ⇔ W =


s1(X1, . . . ,Xn) = 0
...

sn(X1, . . . ,Xn) = 0

0-dimensional
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Solving 0-dimensional systems with Gröbner Bases tools

Original
System

−→ DRL Basis
F4, F5

−→ Change order
FGLM

−→ Univariate
Solving

n variables
s equations

∆: degree of regularity

O(s
(
n+∆

∆

)ω
)

D: #solutions

O(nDω)

ω: lin. alg. exponent

computational
bottleneck

Goal: reduce D
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About degrees of ideals

Let x = (x1, . . . , xn) and I ⊂ F[x]. HS : Hilbert Series

deg I = #points “when cut by dim I hyperplanes”
= HSF[x]/I(1)

= dimF F[x]/I when dim I = 0.

With weights w = (w1, . . . ,wn):

degw I =
HSF[x]/I(1)∏n

i=1 wi

= dimF F[x]/I when dim I = 0.

Proposition: With ϕ(xi ) = xwi

i , degw I =
degϕ(I)∏n

i=1 wi
.

Corollary: If dim I = 0, #solutions is divided by
∏n

i=1 wi .
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Degree of systems in PDPm solving on elliptic curves

Sn+1(xR ,X1, . . . ,Xn) = 0 ⇔ W =


s1(X1, . . . ,Xn) = 0
...

sn(X1, . . . ,Xn) = 0

degW = n! 2n(n−1)

FGLM runs in O(degW ω) + Probability for a relation: 1/n!

Known reduction: degW = 2n(n−1) > 2(n−1)2† > 2(n−1)(n−2)††

PDPm solving for higher genus?

†: [Faugère-Gaudry-Huot-Renault]
††: [Faugère-Huot-Joux-Renault-Vitse]
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Geometric view of Decompositions

H : y2 + h1(x)y = h0(x),
R = {R1, . . . ,Rg} ∈ J (H), Ri = (xRi , yRi ).

Goal: R = P1 + · · ·+ Pm

[Nagao] Find f (x , y) of lowest degree s.t.:
f (xRi , yRi ) = f (xi , yi ) = 0.

Space of such f ’s: Span(f1, . . . , fd)

f =
d∑

i=1
ai fi , a = (a1, . . . , ad).

Decomposition Polynomial DPR

DPR(x) =
Resy (H, f )∏

(x − xRi )
= xm +

m−1∑
i=0

Ni (a)x i

If f describes a decomposition:

DPR(xi ) = 0, 1 ≤ i ≤ m

Example if g = 2 and m = 4:

R2

R1

24 / 45



Geometric view of Decompositions

H : y2 + h1(x)y = h0(x),
R = {R1, . . . ,Rg} ∈ J (H), Ri = (xRi , yRi ).

Goal: R = P1 + · · ·+ Pm

[Nagao] Find f (x , y) of lowest degree s.t.:
f (xRi , yRi ) = f (xi , yi ) = 0.

Space of such f ’s: Span(f1, . . . , fd)

f =
d∑

i=1
ai fi , a = (a1, . . . , ad).

Decomposition Polynomial DPR

DPR(x) =
Resy (H, f )∏

(x − xRi )
= xm +

m−1∑
i=0

Ni (a)x i

If f describes a decomposition:

DPR(xi ) = 0, 1 ≤ i ≤ m

Example if g = 2 and m = 4:

P1

P3

R2

P2

R1

P4

24 / 45



Geometric view of Decompositions

H : y2 + h1(x)y = h0(x),
R = {R1, . . . ,Rg} ∈ J (H), Ri = (xRi , yRi ).

Goal: R = P1 + · · ·+ Pm

[Nagao] Find f (x , y) of lowest degree s.t.:
f (xRi , yRi ) = f (xi , yi ) = 0.

Space of such f ’s: Span(f1, . . . , fd)

f =
d∑

i=1
ai fi , a = (a1, . . . , ad).

Decomposition Polynomial DPR

DPR(x) =
Resy (H, f )∏

(x − xRi )
= xm +

m−1∑
i=0

Ni (a)x i

If f describes a decomposition:

DPR(xi ) = 0, 1 ≤ i ≤ m

Example if g = 2 and m = 4:

P1

P3

R2

P2

R1

P4

x1 x3x2 x4

24 / 45



Solving PDPm for hyperelliptic curves [Nagao]

H of genus g , defined over Fqn , R ∈ J (H).

Goal: Find a s.t. DPR(x) = xm +
m−1∑
i=0

Ni (a)x i has root x1, . . . , xm

∈ Fq

1. Add constraints: Look for Pi with xi ∈ Fq

All xi ∈ Fq ⇒ All Ni (a) ∈ Fq

2. With Fqn = SpanFq
(1, t, . . . , tn−1), write ai =

∑
aijtj.

Then ∃ Nij ∈ Fq[a1,0, . . . , ad,n−1] s.t.:

Ni (a) =
n−1∑
j=0

Nij(a1,0, . . . , ad,n−1)tj

3. Ni (a) ∈ Fq ⇔W = {Nij(a1,0, . . . , ad,n−1) = 0 for j > 0}.
Set m = ng, so that dimW = 0 and solve W .
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Degree of systems

W = {Nij(a1,0, . . . , ad,n−1) = 0 for j > 0}

degW = 2n(n−1)g

FGLM runs in O(degW ω) + Probability for a relation: 1/(ng)!

+ No degree reduction known.
+ Huge degree, lot of variables.
+ Very low probability of decomposition.

ex: g = 2, n = 3

deg = 4096,#vars = 12

proba= 1/720

⇒ very few practical cases (essentially n(n − 1)g ≤ 12).
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Situation

Before this thesis:

↙ ↘
Nagao: works for all genus.
But: quickly untractable.
ex: g = 2, n = 3, k = F215

Solving one PDP6 instance ≈ 1500sec.
Finding one relation ≈ 12.5 days!

g = 1: Summation more efficient.
But: only for g = 1!

Contribution:
Introduce and analyze a Summation modelling for higher genus.
Reduce systems’ degree in even characteristic.
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1 Context and background

2 Contribution : improving smooth relations harvesting

3 Decomposition attacks on curves: state of the art

4 Contribution: summation Ideals

5 Contribution: degree reduction in even characteristic

6 Conclusion & perspectives
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Summation Variety
J-C. Faugère, A. Wallet, The Point Decomposition Problem on Hyperelliptic curves,

DCC Journal [In revision]

H hyperelliptic curve over F. R ∈ J (H).

Goal: Describe Vm,R = { (P1, . . . ,Pm) :
∑m

i=1(Pi ) = R} “Summation Variety”

From [Nagao]: DPR(x) = xm +
m−1∑
i=0

Ni (a)x i (1)

R = (P1) + · · ·+ (Pm) iff DPR(xi ) = 0 for all i . With ei = Symi (x1, . . . , xm):

DPR(x) = xm+
m−1∑
i=0

(−1)m−iem−ix
i (2)

Equations (1) and (2) give:

Im,R =


Nm−1(a) = e1,
...

N0(a) = (−1)m+1em.
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Summation ideals

Theorem
Let Im,R ⊂ F[x, a] be the ideal defined previously. Then Vm,R = V (Im,R).

Conditions in x : eliminate a

Geometry
projection onto x

Algebra
Gröbner basis of Im,R ∩ F[x].

mth Summation Ideals
For m ≥ g + 1, the mth summation ideal for H is Im,R ∩ F[x].

If 〈Sm,R〉 = Im,R ∩ F[x], then Sm,R is called a set of m-summation polynomials,
or a mth summation set.
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Properties of Summation Ideals

Sm,R(x) : evaluation of all S ∈ Sm,R at x. H hyperelliptic curve over F.

Summation property

Sm,R(x) = 0⇔ ∃ y1, . . . , ym ∈ F s.t. Pi = (xi , yi ) ∈ H and
(P1) + · · ·+ (Pm) = R.

Invariance by permutations

〈Sm,R〉Sm = 〈Sm,R〉, and the modelling computes a symmetrized summation set.

Let V = V (Im,R ∩ F[e]) (symmetrized).

CodimV = g ⇒ #Sm,R ≥ g
in practice, #Sm,R � g

Heuristic: degV = 2m−2g

[Diem]: proven for g = 1
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New PDPm solving for hyperelliptic curve

Input: H def. over Fqn , R ∈ J (H), F = {(P) ∈ J (H) : x(P) ∈ Fq}.
Goal: Find decomposition R = (P1) + · · ·+ (Png ), Pi ∈ F .

1. Compute ng th Summation Set Sng ,R .

R = P1 + · · ·+ Png ⇔ Sng ,R(x1, . . . , xng ) = 0.

2. Sng ,R = {S1, . . . ,Sr} and Fqn = SpanFq
(1, t, . . . , tn−1).

∃ sij ∈ Fq[X1, . . . ,Xng ] s.t.:

∀ 1 ≤ i ≤ r , Si (x1, . . . , xng ) =
n−1∑
i=0

sij(x1, . . . , xng )tj.

3. Sng ,R(x1, . . . , xng ) = 0 ⇔ W =


s11(x1, . . . , xng ) = 0
...

srn(x1, . . . , xng ) = 0
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Analysis, comparison with Nagao

Sng ,R(x1, . . . , xng ) = 0 ⇔ W =


s11(x1, . . . , xng ) = 0
...

srn(x1, . . . , xng ) = 0

Let V = V (Im,R ∩ F[e]) (symmetrized).

r ≥ g = CodimV⇒ dimW = 0.
m = ng ⇒ degV = 2(n−1)g .
W ⊂ Wn(V) - Weil Restriction of V over Fq: degWn(V) = (degV)n.

⇒ degW = (degV)n = 2n(n−1)g.

Same degree as Nago ⇒ Same practical cases...
Less variables but need to compute an elimination basis.

The two modellings are “equivalent”.
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1 Context and background

2 Contribution : improving smooth relations harvesting

3 Decomposition attacks on curves: state of the art

4 Contribution: summation Ideals

5 Contribution: degree reduction in even characteristic
Square coefficients of DPR

Degree reduction for Nagao’s approach
Degree reduction for summation approach
Simulation of a realistic DL computation

6 Conclusion & perspectives
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Structure of DPR in even characteristic
J-C. Faugère, A. Wallet, The Point Decomposition Problem on hyperelliptic curves,

DCC Journal [In revision]

H : y2 + h1(x)y = h0(x) hyperelliptic of genus g over F2kn .

Fix R ∈ J (H) and DPR(x) = xm +
m−1∑
i=0

Ni (a)x i .

Square coefficients

Let h1(x) =
∑d

i=t αix
i , and let L = d− t be the length of h1(x).

There are exactly g − L + 1 square coefficients among the Ni (a).

In Nagao’s approach:
Ni (a) square ⇒

√
Nij(ā) = 0

Replaced by linear equations

In Summation approach:
Induces weight system on variables.
Weighted degree is smaller.
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Degree reduction for Nagao’s approach over F2kn

H : y2 + h1(x)y = h0(x) hyperelliptic of genus g over F2kn

With additional reductions:

Theorem
Let h1(x) =

∑d
i=t αix

i , and let L = d− t. Solving a PDPng instance on H can be
done by solving a system of degree:

dnew = 2(n−1)((n−1)g+L−1).

From dold = 2(n−1)ng, we obtain:

(tight bounds) 2(n−1)((n−1)g−1) ≤ dnew ≤ 2(n−1)(ng−1)

factor 2(n−1)(g+1) dold
dnew

2n−1

Example: g = 2, n = 3. Type II curve y2 + xy = x5 + ax3 + bx2 + c over F245

Solving over F215 with Magma 2.19:
dold = 212 = 4096. Time: ≈ 1500s.
dnew = 26 = 64. Time: ≈ 0.029s

Ratio: ≈ 75000
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Square equations and weights: degree reduction

Let k = #squared Ni (a). Renumber s.t.:

DPR(x) = xm +
m−1∑

i=m−k
Ñ2

m−i (a)x i +
m−k−1∑

i=0
Nm−i (a)x i .

Im,R :



Ñ2
i (a) = ei

Ni (a) = ei

Jm,R :



Ñi (a) = ei

Ni (a) = ei

Ie = Im,R ∩ F[e] Je = Jm,R ∩ F[e]

Theorem
With ϕ(ei ) = ewi

i , Ie is the radical of ϕ(Je).

Applications: Find points in V (Je) instead of V (Ie).
“Weighted degree of Je is smaller than deg Ie”
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Degree reduction in summation approach over F2kn, step 1

Let VJ = V (Je), VI = V (Ie).

Theorem

There is a constant C depending on h1 s.t. degw(VJ) = C · degVI

2m−g+L
.

With F2kn = SpanF2k
(1, t, . . . , tn−1), write ei =

∑n−1
i=0 eijtj.

weight ei = 2⇒ weight eij = 2⇒ degWn(V∗) ∩ V (eij) = 2 degWn(V∗)

Let W =Wn(VJ) ∩ ⋂
i,j≥1

V (eij). Experimentally, C = 2L.

Corollary: In PDPng instances (m = ng), with L =length of h1:

degW = C n · dold
2(n−1)(g−L)+nL

=
dold

2(n−1)(g−L)
.
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Degree reduction in summation approach, step 2

H : y2 + h1(x)y = h0(x) hyperelliptic of genus g over F2kn

With additional reductions:

Theorem
Let h1(x) =

∑d
i=t αix

i , and let L = d− t. Solving a PDPng instance on H can be
done by solving a system of degree

dnew = 2(n−1)((n−1)g+L−1).

From dold = 2(n−1)ng:

(tight bounds) 2(n−1)((n−1)g−1) ≤ dnew ≤ 2(n−1)(ng−1)

factor 2(n−1)(g+1) dold
dnew

2n−1

What is hidden:
Best reduction achieved for less types of curves.
Need to find curves isomorphisms to obtain same reductions as in Nagao’s.
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Comparison of approaches after reduction

Best reduction Implementation Best running time†

Nagao immediate when L = 0 Easy ≈ 0.029s.

Summation needs L = 0 and Tricky ≈ 0.34s.
additional work

Winner for a realistic computation: Nagao’s approach.

†: for binary genus 2 curves over F245
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Simulation of a realistic DL computation
Parameters:

H : y2 + xy = x5 + f3x3 + x2x + f0, g = 2.

Field K = F293 , n = 3.

#J (H) = 2× 3× p, log p = 184, p prime.

⇒ Generic bound ≈ 292.

Modelling for PDP6 instances:
Nagao with Degree reduction.

Ideals have degree 64, field: F231 .

Dedicated implementation:
DRL Basis: code generating techniques
and F5 alg.

Change-ordering: Sparse FGLM
[Faugère-Mou].

Solving one PDP6 instance:

DRL Basis: 3.87 · 10−4sec.

+ Sparse-FGLM: 5.93 · 10−4sec.

+ Univariate Solving: 2.22 · 10−3sec.

≈ 3.2 · 10−3sec.

Finding one relation:

× (ng)! = 720 in avg.

Avg. total time ≈ 2.3 sec.

Parallel Harvesting:

≈ 231 relations with 8000 cores:
≈ 7 days.

(Before: estimation in years...)
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About my work

General Topic: Index-Calculus over curves with genus g ≥ 2

Objectives:

Focus on the harvesting phase

Sharpen complexity bounds

Methods:
Analyze algebraic properties
Exploit field’s structure
(characteristic, subfields, . . . )

-> Improve existing methods
Design new ones

-> Restrict set of practical parameters
Highlight potential weaknesses

Tools:
Computer Algebra (Magma, Maple)
Efficient Gröbner Bases libraries
(Maple/FGb)
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Conclusion

Results:

> Improved harvesting phase in “Smooth” search

> Introduced/analyzed Summation ideals for higher genus
Not presented: – Less efficient definition

– Obstruction to incremental computations

> Reduced degree of PDPm systems in even characteristic
Not presented: – Frobenius action over parametrizations in general

– Reductions not linked to squares & technicalities.

> Made practical harvesting on a meaningful genus 2 curve

Side results:

+ Nagao > Summation in characteristic 2.

+ Experimentally, Nagao > Summation in
characteristic p.

Limits:

- No reduction in characteristic p > 2

- Symmetries of Summation variety
unclear

- Can’t exploit Jacobian automorphisms
(2-torsion,...).
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Perspectives

Generalization using Kummer Varieties
> Give theoretical framework of “Summation Polynomials” for Abelian Varieties.

If g = 2: group law well-understood with theta functions.
[Gaudry’07], [Gaudry-Lubicz’09], [Lubicz-Robert’15], [Costello & al.’16], ...

> Explicit “Jacobian” Summation Polynomials using theta arithmetic.

> Design new Decomposition Attack.

Exploiting Symmetries: if g = 1, degree reduction achieved with 2-torsion.
? Can we exploit automorphisms in the Kummer variety ?
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Thank you for your attention !

^^3 3- -

3
>

--
~

45 / 45


	Context and background
	Cryptography and Discrete Logarithms
	Short(est) tour of Jacobian varieties
	About Index-Calculus

	Contribution : improving smooth relations harvesting
	Old-school smooth harvesting
	New approach: Harvesting by Sieving
	Timings

	Decomposition attacks on curves: state of the art
	On elliptic curves [Diem], [Gaudry]
	On hyperelliptic curves [Nagao]

	Contribution: summation Ideals
	Contribution: degree reduction in even characteristic
	Square coefficients of DPR
	Degree reduction for Nagao's approach
	Degree reduction for summation approach
	Simulation of a realistic DL computation

	Conclusion & perspectives

