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For m, ` integers with (m, q) = 1, a QC code of length m` and index ` over
Fq is a linear code C ⊆ Fm`

q , if it is invariant under shift of codewords by `
positions.

c =

 c00 . . . c0,`−1
...

...
cm−1,0 . . . cm−1,`−1

 ∈ Fm×`
q ' Fm`

q

Invariance under shift by ` units is equivalent to being closed under row shift.
In particular, a QC code of index ` = 1 is a cyclic code.

If C is also closed under column shift, then it’s called a 2D cyclic code.
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Algebraic Structure

The codewords of a cyclic code can be viewed as polynomials via the
identification:

Fm
q −→ Fq[x ]/〈xm − 1〉 = R c0
...

cm−1

 7→ c(x) =
m−1∑
i=0

cix
i

The shift by 1 unit corresponds to x .c(x) ⇒ a cyclic code is an ideal in R.
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Algebraic Structure

Similarly one can define a QC code in R`:

Fm×`
q −→ R` c00 c01 . . . c0,`−1

...
...

...
cm−1,0 cm−1,1 . . . cm−1,`−1

 7→ ~c(x) = (c0(x), . . . , c`−1(x))

where cj(x) =
m−1∑
i=0

cijx
i , ∀ 0 ≤ j ≤ `− 1.

Row shift in Fm×`
q corresponds to coordinatewise multiplication by x in R`.

⇒ C ⊆ R` is an R-submodule.
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Algebraic Structure

Let S := Fq[x , y ]/〈xm − 1, y ` − 1〉 and view a codeword c = (cij) ∈ C as a
2-variate polynomial in S :

c(x , y) =
m−1∑
i=0

`−1∑
j=0

cijx
iy j

Then

C is QC ⇔ C is an R-submodule in S .
C is 2D-cyclic ⇔ C is an ideal in S .

Buket Özkaya Multidimensional Quasi-Cyclic and Convolutional Codes



Quasi-Cyclic and Convolutional Codes
Multidimensional QC Codes

Links to Multidimensional Convolutional Codes

Quasi-cyclic codes
Concatenated structure of QC codes
Convolutional codes

Algebraic Structure

Let S := Fq[x , y ]/〈xm − 1, y ` − 1〉 and view a codeword c = (cij) ∈ C as a
2-variate polynomial in S :

c(x , y) =
m−1∑
i=0

`−1∑
j=0

cijx
iy j

Then

C is QC ⇔ C is an R-submodule in S .
C is 2D-cyclic ⇔ C is an ideal in S .
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Constituents (Ling-Solé, 2001)

Consider the factorization of xm − 1 into irreducibles in Fq[x ]:

xm − 1 = f1(x) . . . fs(x)

Since (m, q) = 1, there are no repeating factors. By CRT we have:

R = Fq[x ]/〈xm − 1〉 ' Fq[x ]/〈f1(x)〉 ⊕ . . .⊕ Fq[x ]/〈fs(x)〉

R ' E1 ⊕ . . .⊕ Es ⇒ R` '
s⊕

i=1

E`i

Hence, C =
s⊕

i=1

Ci where Ci ⊆ E`i is a length ` code over Ei for each

1 ≤ i ≤ s. Ci ’s are said to be the constituents of C.
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Concatenated Form

Let 〈θi 〉 be the minimal cyclic code of length m over Fq with the check
polynomial fi (x) and the primitive idempotent generator θi . Note that 〈θi 〉 is
isomorphic to Ei = Fqdegfi .

Theorem (Jensen, 1985)

Let C be a QC code. For some subset I of {1, . . . , s}, we have

C =
⊕
i∈I

(〈θi 〉�Ci ),

where Ci is a linear code over Ei of length `. Converse also holds.

Theorem (Güneri-Özbudak, 2013)

Ci = Ci for each i .
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Convolutional Codes

An (`, k) convolutional code C over Fq is defined as a k-dimensional
Fq(x)-subspace of Fq(x)`.

A generator matrix of C is a k × ` matrix over Fq(x). By clearing off the
denominators of all the entries in any generating matrix, we can obtain a
PGM for C such that

C =
{

(u0(x), . . . , uk−1(x)) G : (u0(x), . . . , uk−1(x)) ∈ Fq(x)k
}
.

Moreover, it is usually assumed that G is noncatastrophic in the sense that
finite weight outputs come from finite weight inputs:

i. G is noncatastrophic if and only if the g.c.d. of all k × k minors of G is
xb for some nonnegative integer b.

ii. G is basic if and only if the g.c.d. of all k × k minors of G is 1.
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Convolutional Codes vs. QC Codes

If C is given with a basic PGM, which exists for any convolutional code
(McEliece), then all polynomial codewords come from polynomial
information words. Moreover, a basic PGM has a polynomial right inverse.

An (`, k) convolutional code over Fq can be viewed as an Fq[x ]-submodule
of Fq[x ]`.

(Tanner, Solomon-van Tilborg, Levy-Costello, Lally)
For C ⊆ Fq[x ]` a convolutional code, define an associated QC code as
C̄ = C/〈xm − 1〉 ⊆ (Fq[x ]/〈xm − 1〉)`.

Theorem (Lally)

df (C) ≥ d(C̄)
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Convolutional Codes vs. QC Codes

Idea: ~c ′(x) = ~c(x) mod (xm − 1)

Case 1: ~c ′(x) 6= 0⇒ wt(~c(x)) ≥ wt(~c ′(x)).

Case 2: ~c ′(x) = 0⇒ ~c(x) = (xm − 1)γ · ~y(x)
Then consider ~y(x) ∈ C and ~y ′(x) = ~y(x) mod (xm − 1)

⇒ ~y ′(x) ∈ C ′ and wt(~c(x)) ≥ wt(~y ′(x)) (Massey, Costello, Justesen).
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3D codes

For m, `, k integers with (m, q) = 1, consider a Fq-linear code whose
codewords are viewed as cubes in Fm×`×k

q :

We call C a 3D cyclic code if it is closed under bottom-to-top, right-to-left
and back-to-front face shifts of its codewords.
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A 3D cyclic code can be viewed as an index `k QC code, if we put its
codewords into a 2D form:

↓

The face shifts in the 3D representation correspond to row shift, column shift
in each m × ` subarrays and m × ` block shift, respectively.
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C ⊂ Fm×`k
q is called a quasi 2D cyclic (Q2DC) code if its codewords are

closed under row shift and column shifts in each m × ` subarrays.

In other words, the codewords of a Q2DC code C ⊂ Fm×`×k
q are closed

under bottom-to-top, right-to-left shifts.

Observe that for k = 1 we get a 2D cyclic code.
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Algebraic Structure

Q2DC codes are S-submodules in Sk , where the codewords can be written as

~c(x , y) = (c0(x , y), . . . , ck−1(x , y))

such that ct(x , y) =
m−1∑
i=1

`−1∑
j=1

cijtx
iy j ∈ S , 0 ≤ t ≤ k − 1.

Equivalently, view them as elements of T = Fq[x , y , z ]/〈xm − 1, y ` − 1, zk − 1〉 such
that

c(x , y , z) =
m−1∑
i=1

`−1∑
j=1

k−1∑
t=1

cijtx
iy jz t

.

Invariance under face shifts in C amounts to being closed under multiplication by
x , y and z in T .

C is Q2DC ⇔ C is an S-submodule of T
C is 3D-cyclic ⇔ C is an ideal in T
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Buket Özkaya Multidimensional Quasi-Cyclic and Convolutional Codes



Quasi-Cyclic and Convolutional Codes
Multidimensional QC Codes

Links to Multidimensional Convolutional Codes

Q2DC and 3D cyclic codes
QnDC codes
Concatenated structure and Asymptotics

Algebraic Structure

Q2DC codes are S-submodules in Sk , where the codewords can be written as

~c(x , y) = (c0(x , y), . . . , ck−1(x , y))

such that ct(x , y) =
m−1∑
i=1

`−1∑
j=1

cijtx
iy j ∈ S , 0 ≤ t ≤ k − 1.

Equivalently, view them as elements of T = Fq[x , y , z ]/〈xm − 1, y ` − 1, zk − 1〉 such
that

c(x , y , z) =
m−1∑
i=1

`−1∑
j=1

k−1∑
t=1

cijtx
iy jz t

.

Invariance under face shifts in C amounts to being closed under multiplication by
x , y and z in T .

C is Q2DC ⇔ C is an S-submodule of T
C is 3D-cyclic ⇔ C is an ideal in T
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Quasi-nD-Cyclic Code

R1 = Fq[x1]/〈xm1
1 − 1〉

R2 = Fq[x1, x2]/〈xm1
1 − 1, xm2

2 − 1〉
...

Rn = Fq[x1, x2, . . . , xn]/〈xm1
1 − 1, . . . , xmn

n − 1〉
Rn+1 = Fq[x1, . . . , xn, xn+1]/〈xm1

1 − 1, . . . , xmn+1

n+1 − 1〉

Then a QnDC code of length m1m2 . . .mnmn+1 is an Rn-submodule of Rn+1,
whereas an (n + 1)D cyclic code in an ideal in Rn+1.

Note that such a code can be viewed as a QC code of index
m2m3 . . .mnmn+1

Buket Özkaya Multidimensional Quasi-Cyclic and Convolutional Codes



Quasi-Cyclic and Convolutional Codes
Multidimensional QC Codes

Links to Multidimensional Convolutional Codes

Q2DC and 3D cyclic codes
QnDC codes
Concatenated structure and Asymptotics

Quasi-nD-Cyclic Code

R1 = Fq[x1]/〈xm1
1 − 1〉

R2 = Fq[x1, x2]/〈xm1
1 − 1, xm2

2 − 1〉
...

Rn = Fq[x1, x2, . . . , xn]/〈xm1
1 − 1, . . . , xmn

n − 1〉
Rn+1 = Fq[x1, . . . , xn, xn+1]/〈xm1

1 − 1, . . . , xmn+1

n+1 − 1〉

Then a QnDC code of length m1m2 . . .mnmn+1 is an Rn-submodule of Rn+1,
whereas an (n + 1)D cyclic code in an ideal in Rn+1.

Note that such a code can be viewed as a QC code of index
m2m3 . . .mnmn+1
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Concatenated Form and Asymptotics

Theorem

Constituents (outer codes) of a QnDC code are Q(n− 1)DC codes. Converse
also holds.

Theorem

QnDC codes are asymptotically good.

Idea for n = 2:
QC codes are known to be asymptotically good, take one such sequence {Cj}
with d(Cj) = dj over Ei and consider C̃j = 〈θi 〉�Cj .

Then {C̃j} is also an asymptotically good sequence of Q2DC codes with
minimum distance at least d(θi )dj .

Buket Özkaya Multidimensional Quasi-Cyclic and Convolutional Codes



Quasi-Cyclic and Convolutional Codes
Multidimensional QC Codes

Links to Multidimensional Convolutional Codes

Q2DC and 3D cyclic codes
QnDC codes
Concatenated structure and Asymptotics

Concatenated Form and Asymptotics

Theorem

Constituents (outer codes) of a QnDC code are Q(n− 1)DC codes. Converse
also holds.

Theorem

QnDC codes are asymptotically good.

Idea for n = 2:
QC codes are known to be asymptotically good, take one such sequence {Cj}
with d(Cj) = dj over Ei and consider C̃j = 〈θi 〉�Cj .

Then {C̃j} is also an asymptotically good sequence of Q2DC codes with
minimum distance at least d(θi )dj .
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nD convolutional codes
Distance relation

nD-convolutional codes

Suppose that G is an k × ` full rank polynomial matrix G with entries from
Fq[x1, . . . , xn]. An n-dimensional (nD) convolutional code over Fq of length
` is defined in general as an Fq[[x1, . . . , xn]]-module in Fq[[x1, . . . , xn]]`

generated by the rows of G (Fornasini-Valcher, Weiner), i.e.

C = {(u0, . . . , uk−1) G : ui ∈ Fq[[x1, . . . , xn]] ∀i} .

We assume that C is encoded by a is a noncatastrophic PGM G : all the full
size (k × k) minors of G has no common divisors in Fq[x1, . . . , xn] with
nonzero constant term.

Buket Özkaya Multidimensional Quasi-Cyclic and Convolutional Codes



Quasi-Cyclic and Convolutional Codes
Multidimensional QC Codes

Links to Multidimensional Convolutional Codes

nD convolutional codes
Distance relation

nD-convolutional codes

Suppose that G is an k × ` full rank polynomial matrix G with entries from
Fq[x1, . . . , xn]. An n-dimensional (nD) convolutional code over Fq of length
` is defined in general as an Fq[[x1, . . . , xn]]-module in Fq[[x1, . . . , xn]]`

generated by the rows of G (Fornasini-Valcher, Weiner), i.e.

C = {(u0, . . . , uk−1) G : ui ∈ Fq[[x1, . . . , xn]] ∀i} .

We assume that C is encoded by a is a noncatastrophic PGM G : all the full
size (k × k) minors of G has no common divisors in Fq[x1, . . . , xn] with
nonzero constant term.
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nD convolutional codes
Distance relation

Finite weight power series are clearly polynomials. Therefore, we will consider

C = {(u0, . . . , uk−1) G : ui ∈ Fq[x1, . . . , xn] ∀i}

and such a code will be referred to as (`, k) nD convolutional code, which is
an Fq[x1, . . . , xn]-module in Fq[x1, . . . , xn]`.

Unlike the classical case (n = 1), not every such module is necessarily free
when n ≥ 2, although only free nD convolutional codes are studied in some
articles.
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nD convolutional codes
Distance relation

Note that if we reduce an n-dimensional convolutional code C modulo the
ideal In = 〈xm1

1 − 1, . . . , xmn
n − 1〉 then the resulting linear block code

C̄ = C/In ⊆ R`
n = (Fq[x1, x2, . . . , xn]/In)` is nothing but a Q-nD-C code.

Question: How to generalize the distance relation?

Problems:

1 The existence of a basic PGM for any nD convolutional code is
unknown.

2 The weight preserving property is proven for 1D case only.
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nD convolutional codes
Distance relation

For nonzero polynomials g1, . . . , g` ∈ Fq[x1, . . . , xn], consider the set

Jm1,...,mn = {u(x1, . . . , xn) ∈ Fq[x1, . . . , xn]; ugi ∈ In,∀i = 1, . . . , `}.

Note that Jm1,...,mn is clearly an ideal of Fq[x1, . . . , xn]. Moreover,

In = 〈xmn
1 − 1, . . . , xmn

n − 1〉 ⊆ Jm1,...,mn

holds in general.

For 1-generator 1D convolutional codes, we have the following equivalence to
noncatastrophicity.

Lemma

Let g0(x), . . . , g`−1(x) be nonzero polynomials in Fq[x ]. Let

Jm = {h(x) ∈ Fq[x ] : h(x)gi (x) ∈ 〈xm − 1〉∀i = 0, . . . , `− 1}.

Then, the encoder G =
(
g0(x), . . . , g`−1(x)

)
is noncatastrophic for the

convolutional code C that it generates iff Jm = 〈xm − 1〉 for all m ≥ 1.
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We will consider 1-generator 2D convolutional codes given with a PGM
G =

(
g1(x , y), . . . , g`(x , y)

)
which satisfies

Jm1,m2 = 〈xm1 − 1, ym2 − 1〉, (1)

for all m1,m2 ≥ 1.

Theorem

Let C be a 1-generator (`, k) 2D convolutional code given with a PGM
G = (g1(x , y), . . . , g`(x , y)) satisfying (1) for some m1,m2 ≥ 1.
Let C ′ be the associated Q2DC code in (Fq[x , y ]/〈xm1 − 1, ym2 − 1〉)`.
Then df (C ) ≥ d(C ′).
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