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Our purpose

Model ranking data.
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General types of ranking data

Complete set of items JnK = {1, . . . , n} (no features).

I Full rankings:
a1 ≺ · · · ≺ an

I Partial rankings:

a1,1, . . . , a1,n1 ≺ · · · ≺ ar ,1, . . . , ar ,nr with
r∑

i=1

ni = n

I Incomplete rankings:

a1 ≺ · · · ≺ ak with k < n
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The case of full rankings

Full ranking a1 ≺ ... ≺ an ↔ Permutation σ such that σ(ai ) = i

Statistical setting for observations: σ1, . . . , σN ∼ p i.i.d.
where p is a probability distribution on Sn,

p ∈ L(Sn) := {f : Sn → R}.

Many approaches to characterize the structure of p

I Parametric modeling: Placket-Luce model, Mallows model,
Thurstone model, . . .

I “Non-parametric” modeling: Kernel-based smoothing,
Independence assumptions, Harmonic analysis, . . .
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Group-based harmonic analysis on Sn

I For σ ∈ Sn, define the translation operator

Tσ : L(Sn)→ L(Sn)

f 7→ f (σ−1.)

I The Tσ’s do not commute but σ 7→ Tσ is the left regular
representation of Sn

I Hence the spectral decomposition

L(Sn) ∼=
⊕
λ`n

dλSλ

where
I the λ’s correspond to frequencies
I the Sλ are irreducible representations of Sn

I dλ = dim Sλ and is also its multiplicity in the decomposition
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Group-based harmonic analysis on Sn

I λ ` n is a partition of n: λ = (λ1, . . . , λr ) ∈ JnKr with
λ1 ≥ · · · ≥ λr and such that

∑r
i=1 λi = n.

I Dominance ordering on partitions of n: for λ = (λ1, . . . , λr )
and µ = (µ1, . . . , µs) define

λD µ if for all j ∈ {1, . . . , r},
j∑

i=1

λi ≥
j∑

i=1

µi .

I The nested sequence of subspaces

S (n) ⊂ S (n)⊕S (n−1,1) ⊂ · · · ⊂
⊕
λDλ0

Sλ ⊂ · · · ⊂
⊕
λD1n

Sλ = L(Sn)

defines a meaningful approximation procedure for L(Sn).
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General types of ranking data

Items Ranks Ranking form

Full rankings

JnK JnK
a1 ≺ · · · ≺ an

σ : JnK→ JnK (bijective)
σ−1(i) = ai

Partial rankings

JnK {1, . . . , r}
a1,1, . . . , a1,n1 ≺ · · · ≺ ar ,1, . . . , ar ,nr
γ : JnK→ {1, . . . , r} (surjective)
γ−1({i}) = {ai ,1, . . . , ai ,ni}

Incomplete rankings

A ⊂ JnK {1, . . . , |A|}
a1 ≺ · · · ≺ a|A|

π : A→ {1, . . . , |A|} (bijective)
|A| ≥ 2 π−1(i) = ai
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Application

Example: Recommendation system

I JnK represents the catalog of items (movie, songs, books, ...)

I Each user expresses preferences on subsets of items of the
form

a1 ≺ · · · ≺ ak ,

with k ≤ k0

I Knowing the preferences of a given user, in what order
should we present a subset of items?

Principle

n is big, of the order of 106

k0 is small, of the order of 10 (k0 = 2 for pairwise comparisons)
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Formalism

Setting

I JnK: complete set of items

I A ⊂ P(JnK): observation design

I (PA)A∈A: family of probability distributions on each RA

Notations
For a finite set E ,

P(E ) := {A ⊂ E | |A| ≥ 2}

For A ∈ P(JnK),

RA := {π : A→ {1, . . . , |A|} | π bijective}: rankings on A
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Example
n = 4 and A = {{1, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 3, 4}}
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𝑃{1,3,4}

𝑃{1,3} 𝑃{2,4} 𝑃{3,4}

1 ≺ 2 ≺ 3 1 ≺ 3 ≺ 2 2 ≺ 1 ≺ 3 2 ≺ 3 ≺ 1 3 ≺ 1 ≺ 2 3 ≺ 2 ≺ 1

𝑃{1,2,3}

1 ≺ 3 ≺ 4 1 ≺ 4 ≺ 3 3 ≺ 1 ≺ 4 3 ≺ 4 ≺ 1 4 ≺ 1 ≺ 3 4 ≺ 3 ≺ 1

1 ≺ 3 3 ≺ 1 2 ≺ 4 4 ≺ 2 3 ≺ 4 4 ≺ 3
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Consistency assumption
Data arise in the space

(PA)A∈A ∈
⊕
A∈A

L(RA).

Consistency assumption: (PA)A∈A is a sub-family of a family
(PA)A∈P(JnK) that satisfies for any A = {a1, . . . , ak} ∈ P(JnK) with
k < n and b ∈ JnK \ A,

PA(ai1 ≺ . . . ≺ aik ) = PA∪{b}(ai1 ≺ . . . ≺ aik ≺ b) + . . .

+ PA∪{b}(ai1 ≺ b ≺ . . . ≺ aik ) + PA∪{b}(b ≺ ai1 ≺ . . . ≺ aik ). (∗)

Example

P{1,3}(1 ≺ 3) = P{1,2,3}(1 ≺ 3 ≺ 2) + P{1,2,3}(1 ≺ 2 ≺ 3) + P{1,2,3}(2 ≺ 1 ≺ 3)
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Consistency assumption

Assumption (∗) ⇔ There exists p probability distribution on Sn

such that for all A ∈ A,

PA(π) =
∑

σ∈Sn(π)

p(σ) for all π ∈ RA,

where

Sn(π) = {σ ∈ Sn | π(a) < π(b)⇒ σ(a) < σ(b), for a, b ∈ JnK}

is the set of linear extensions of π on JnK.
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Consistency assumption
Marginal operator on A ∈ P(JnK):

MA : L(Sn)→ L(RA)

MAf (π) =
∑

σ∈Sn(π)

f (σ) for all π ∈ RA.

Example

For n = 3, f ∈ L(S3),

M{1,3}f (1 ≺ 3) = f (1 ≺ 3 ≺ 2) + f (1 ≺ 2 ≺ 3) + f (2 ≺ 1 ≺ 3).

For a probability distribution p on Sn and A = {a1, . . . , ak},

MAp(ai1 ≺ · · · ≺ aik ) ≡ P [ai1 ≺ · · · ≺ aik |a1, . . . , ak ] .
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Consistency assumption

Global marginal operator on A:

MA : L(Sn)→
⊕
A∈A

L(RA)

f 7→ (MAf )A∈A.

Assumption (∗) ⇔ there exists p probability distribution on Sn

such that
MAp = (PA)A∈A.

Space for data analysis:

MA = {(fA)A∈A ∈
⊕
A∈A

L(RA) | (fA)A∈A satisfies (∗)} = MA(L(Sn)).
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Our purpose

Define meaningful approximation procedures in the space MA, for
any observation design A.
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Group-based harmonic analysis on Sn - Interpretation

For λ = (λ1, . . . , λr ) ` n, define

Partλ(JnK) = {(A1, . . . ,Ar ) ordered partition of JnK | |Ai | = λi}

equipped with the action of Sn:

σ · (A1, . . . ,Ar ) = (σ(A1), . . . , σ(Ar )).

E. Sibony - Telecom ParisTech Multiresolution Analysis of Incomplete Rankings



Motivations
Why group-based harmonic analysis on Sn is not adapted

Our results
The mathematical construction

Ongoing research

Harmonic analysis on Sn - Interpretation

Let p be a probability distribution on Sn and Σ be a random
permutation of law p. If an event E corresponds to a subset
S ⊂ Sn, we define

P[E ] =
∑
σ∈S

p(σ).

For λ ` n and B0 ∈ Partλ(JnK), the λ-marginal in B0 of p is the
probability distribution on Partλ(JnK):

(P [Σ · B0 = B])B∈Partλ(JnK)
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Harmonic analysis on Sn - Interpretation

Example: λ = (n − 1, 1)

Part(n−1,1)(JnK) = {(JnK \ {i}, {i}) | i ∈ JnK}∼= {i ∈ JnK}

(n − 1, 1)-marginals are the probability distributions

(P[Σ(i) = j ])j∈JnK

i.e. the laws of the random variables Σ(i), for i ∈ JnK.
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Harmonic analysis on Sn - Interpretation

Example: λ = (n − 2, 2)

(n − 2, 2)-marginals are the probability distributions

(P[Σ({i1, i2}) = {j1, j2}])1≤j1<j2≤n

i.e. the laws of the random variables {Σ(i1),Σ(i2)}, for
1 ≤ i1 < i2 ≤ n.

Example: λ = (n − 2, 1, 1)

(n − 2, 1, 1)-marginals are the probability distributions

(P[Σ((i1, i2)) = (j1, j2)])1≤j1<j2≤n

i.e. the laws of the random variables (Σ(i1),Σ(i2)), for
1 ≤ i1 < i2 ≤ n.
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Information localization

I Sn-based harmonic analysis localizes “absolute rank
information”:

P[Σ(a1) = i1, . . . ,Σ(ak) = ik ].

I Incomplete rankings analysis requires to localize “relative rank
information”:

P[Σ(a1) < · · · < Σ(ak)].
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Information localization - Example
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Figure: full distribution on S4
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Figure: λ-marginals for λ = (3, 1), (2, 2), (2, 1, 1)
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Information localization - Example
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Figure: marginals on subsets A ⊂ J4K with |A| ≥ 2
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Decomposition of L(Sn)

Let V 0 = {f constant on Sn} = Rψ0 with ψ0 = 1Sn .

Theorem

L(Sn) = V 0 ⊕
⊕

A∈P(JnK)

WA,

where WA is a subspace of L(Sn) that localizes the information
specific to the marginal on A an not to the others:

1. WA ∩ ker MA = {0}
2. WA ⊂ ker MB for all B ∈ P(JnK) such that A 6⊂ B
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Decomposition of a function f ∈ L(Sn)

Corollary

For f ∈ L(Sn), denote by

f =

∑
σ∈Sn

f (σ)

n!
+

∑
A∈P(JnK)

fA

its associated decomposition. Then for all B ∈ P(JnK),

MB f =

∑
σ∈Sn

f (σ)

|B|!
+

∑
A∈P(B)

MB fA.
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Dimension

Theorem
For any A ∈ P(JnK),

dim WA = d|A|

where dk is the number of derangements (fixed-point free
permutations) on k elements:

k 1 2 3 4 5 . . .
with dk ∼ k!

edk 0 1 2 9 44 . . .
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Multiresolution interpretation - Example

L(S4) = V 0 ⊕
4⊕

k=2

⊕
|B|=k

WA

level dim
4 9 W{1,2,3,4}

3 8 W{1,2,3} ⊕W{1,2,4} ⊕W{1,3,4} ⊕W{2,3,4}

2 6 W{1,2} ⊕W{1,3} ⊕W{1,4} ⊕W{2,3} ⊕W{2,4} ⊕W{3,4}

0 1 V 0
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Wavelet framework

We exhibit an explicit “wavelet basis” Ψ of L(Sn) of the form

Ψ = {ψ0} ∪
⋃

A∈P(JnK)

ΨA

where ΨB is a basis of WB for all B ∈ P(JnK).

For any observation design A ⊂ P(JnK),

MA(Ψ) = {MA(ψ0)} ∪
⋃

B∈
⋃

A∈A P(A)

MA(ΨB)

is a basis of MA = MA(L(Sn)).
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Wavelet framework - Example

n = 4 and A = {{1, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 3, 4}}.

W{1,2,3,4}

W{1,2,3} ⊕W{1,2,4} ⊕W{1,3,4} ⊕W{2,3,4}

W{1,2} ⊕W{1,3} ⊕W{1,4} ⊕W{2,3} ⊕W{2,4} ⊕W{3,4}

V0

I A is in orange bold

I
⋃

A∈A P(A) is in bold

I dimMA = 1 +
∑

B∈
⋃

A∈A P(A) d|B| = 1 + 6× 1 + 2× 2 = 11

E. Sibony - Telecom ParisTech Multiresolution Analysis of Incomplete Rankings



Motivations
Why group-based harmonic analysis on Sn is not adapted

Our results
The mathematical construction

Ongoing research

Wavelet framework - Example
The following family of distributions...

0

0,5

1

0

0,5

1

0

0,5

1

0

0,5

1

0

0,5

1

𝑃{1,3,4}

𝑃{1,3} 𝑃{2,4} 𝑃{3,4}

1 ≺ 2 ≺ 3 1 ≺ 3 ≺ 2 2 ≺ 1 ≺ 3 2 ≺ 3 ≺ 1 3 ≺ 1 ≺ 2 3 ≺ 2 ≺ 1

𝑃{1,2,3}

1 ≺ 3 ≺ 4 1 ≺ 4 ≺ 3 3 ≺ 1 ≺ 4 3 ≺ 4 ≺ 1 4 ≺ 1 ≺ 3 4 ≺ 3 ≺ 1

1 ≺ 3 3 ≺ 1 2 ≺ 4 4 ≺ 2 3 ≺ 4 4 ≺ 3
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Wavelet framework - Example
... can be expanded in the wavelet basis

V 0 W{1,2} W{1,3} W{1,4} W{2,3}

{1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4} {1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4} {1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4} {1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4} {1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4}

W{2,4} W{3,4} W{1,2,3} W{1,3,4}

{1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4} {1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4} {1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4} {1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4} {1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4} {1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4}
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Injective words

An injective word over JnK is an expression of the form ω1 . . . ωk

where the ωi ’s are distinct elements of JnK.

I c(ω) := {ω1, . . . , ωk} is the content of ω

I |ω| := |c(ω)| is the length of ω

We denote by 0 the empty word: c(0) = ∅ and |0| = 0, and define
the sets

I Γn: set of all injective words on JnK
I Γk : set of injective words of size k

I Γ(A): set of injective words of content A

Γn =
n⊔

k=0

Γk =
n⊔

k=0

⊔
|A|=k

Γ(A)
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Representation as injective words

I See incomplete rankings as injective words:

a1 ≺ a2 ≺ · · · ≺ ak → a1a2 . . . ak

⇒ RA
∼= Γ(A) for A ∈ P(JnK)

I See functions in L(Γ(A)) as functions in L(Γn) that are null for
π ∈ Γn \ Γ(A), and denote them as free linear combinations:∑

π∈Γn

f (π)δπ →
∑
π∈Γn

f (π)π

I Rq: 0 is the function that is null for every π ∈ Γn while 0 is
the Dirac function in 0
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Representation as injective words

The space L(Sn), the marginal spaces L(RA) for A ∈ P(JnK) and
the spaces L(Γ(A)) for |A| ≤ 1 are all embedded in L(Γn):

L (S4)

L
(
R{1,2,3}

)
⊕ L

(
R{1,2,4}

)
⊕ L

(
R{1,3,4}

)
⊕ L

(
R{2,3,4}

)
L
(
R{1,2}

)
⊕ L

(
R{1,3}

)
⊕ L

(
R{1,4}

)
⊕ L

(
R{2,3}

)
⊕ L

(
R{2,4}

)
⊕ L

(
R{3,4}

)
L(Γ({1}))⊕ L(Γ({2}))⊕ L(Γ({3}))⊕ L(Γ({4}))

L(Γ(0))
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Deletion operator

Definition
For π ∈ Γn and a ∈ c(π), denote by π \ {a} the word obtained by
deleting the letter a in the word π.
Let %a : L(Γn)→ L(Γn) be the linear operator defined on a Dirac
function π by

%aπ =

{
π \ {a} if a ∈ c(π)

0 otherwise.

For a1, a2 ∈ JnK, it is obvious that %a1%a2 = %a2%a1 .
This allows to define, for A = {a1, . . . , ak} ⊂ JnK, %A = %a1 . . . %ak .
We set by convention %∅x = x for all x ∈ L(Γn).
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Marginal and deletion operator

For A ∈ P(JnK) and π ∈ RA,

σ ∈ Sn(π)⇔ for all (a, b) ∈ JnK2, π(a) < π(b)⇒ σ(a) < σ(b)

⇔ π is a subword of σ

⇔ σ \ (JnK \ A) = π

This implies that
MA = %JnK\A
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Projective system

The family of spaces (L(Γ(A)))A⊂JnK equipped with the family of
operators (%B\A)A⊂B⊂JnK is a projective system, i.e. for all
A ⊂ B ⊂ C ⊂ JnK,

I %B\A : L(Γ(B))→ L(Γ(A)),

I %A\Ax = x for all x ∈ L(Γ(A)),

I %B\A%C\B = %C\A.
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𝐿 𝔖4

𝐿 𝔖{1,2,3} 𝐿 𝔖{1,2,4} 𝐿 𝔖{1,3,4} 𝐿 𝔖{2,3,4}⊕ ⊕ ⊕

𝐿 𝔖{1,2} 𝐿 𝔖{1,3} 𝐿 𝔖{1,4} 𝐿 𝔖{2,3}⊕ ⊕ ⊕ 𝐿 𝔖{2,4}⊕ 𝐿 𝔖{3,4}⊕

𝐿 Γ( 1 ) 𝐿 Γ( 2 ) 𝐿 Γ( 3 ) 𝐿 Γ( 4 )⊕ ⊕ ⊕

𝐿 Γ({ 0}

𝜚4

𝜚3 𝜚4 𝜚4

𝜚4 𝜚4 𝜚2

𝜚4

𝜚3

𝜚2
𝜚4 𝜚2

𝜚2
𝜚3 𝜚3

𝜚2 𝜚1

𝜚1 𝜚2
𝜚1

𝜚3

𝜚1
𝜚3

𝜚1 𝜚3
𝜚1 𝜚1 𝜚2 𝜚4

𝜚3𝜚2𝜚1
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Spaces WA

For A ∈ P(JnK), the space

HA = {f ∈ L(RA) | MB f = 0 for all B ( A}
= {f ∈ L(RA) | MB f = 0 for all B ⊂ A with |B| = |A| − 1}
= {f ∈ L(Γ(A)) | %af = 0 for all a ∈ A}

= L(Γ(A)) ∩
⋂
a∈A

ker %a

localizes information of scale |A| on A. We define

WA = φn(HA),

where φn is an embedding operator L(Γn)→ L(Sn).
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Concatenation product

Definition
For π = a1 . . . ar and π′ = b1 . . . bs such that c(π) ∩ c(π′) = ∅,
define

ππ′ = a1 . . . arb1 . . . bs .

It is extended as the bilinear operator L(Γn)× L(Γn)→ L(Γn)
defined on Dirac functions by

(π, π′) 7→

{
ππ′ if c(π) ∩ c(π′) = ∅,

0 otherwise.

E. Sibony - Telecom ParisTech Multiresolution Analysis of Incomplete Rankings



Motivations
Why group-based harmonic analysis on Sn is not adapted

Our results
The mathematical construction

Ongoing research

Embedding operator

For ω ∈ Γn, let iω and jω be the two operators on L(Γn) defined on
the Dirac functions by

iω : π 7→ ωπ and jω : π 7→ πω.

Then define
φn =

∑
ω1,ω2∈Γn

c(ω1)tc(ω2)tc(π)=JnK

iω1 jω2 .

Example

φ5(143) = 25143 + 52143 + 21435 + 51432 + 14325 + 14352.
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Proof

Lemma
For ω ∈ Γn and a ∈ JnK \ c(ω),

%aiω = iω%a and %ajω = jω%a.

Proposition

For A ∈ P(JnK), WA localizes the information specific to A:

WA ∩ ker MA = {0} and WA ⊂
⋂

B∈P(JnK)
B 6⊃A

ker MB .
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Proof

Define L0(Sn) = {f ∈ L(Sn) |
∑

σ∈Sn
f (σ) = 0}, so that:

L(Sn) = V 0
⊥
⊕ L0(Sn).

Proposition

The spaces WA are in direct sum in L0(Sn).

Remark
The sum is not orthogonal.
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Proof

Theorem (Reiner et al., 2013)

For all A ∈ P(JnK),
dim HA = d|A|.

The proof of the decomposition is concluded by a dimensional
argument:

dim

V 0 ⊕
⊕

A∈P(JnK)

WA

 = 1 +
n∑

k=2

(
n

k

)
dk

=
n∑

k=0

(
n

k

)
dn−k = n! = dim L(Sn).
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Link with algebraic topology

The spaces L(Γk) are canonically equipped with the operators
∂k : L(Γk)→ L(Γk−1) defined on Dirac functions by

∂k (π1 . . . πk) =
k∑

m=1

(−1)m−1π1 . . . πm−1πm+1 . . . πk ,

for k ∈ {1, . . . , n}. They are boundary operators: ∂k∂k+1 = 0.
The sequence (L(Γk), ∂k)1≤k≤n is the complex of injective words:

L(Γn)
∂n→ L(Γn−1)

∂n−1→ . . .
∂2→ L(Γ1)

∂1→ L(Γ0)
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Link with algebraic topology

Operators ∂k are interpreted as “divergence” operators

I ker ∂k is the kth cycle space

I im ∂k+1 is the kth boundary space

I Hk = ker ∂k/ im ∂k+1 is the kth homology space

Spaces Hk have been well-studied in the literature. In particular:

I Hk = 0 for k ∈ {1, . . . , n − 1},
I dimHn = dn, where Hn := ker ∂n.
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Link with algebraic topology

We denote the sign of a permutation π ∈ Γn by sgn(π) and define
the operator Sgn : L(Sn)→ L(Sn) on Dirac functions by

Sgn(π) = sgn(π)π.

Proposition

The operator Sgn is an involution between HJnK and Hn. In
particular,

dim HJnK = dimHn = dn.

For A ∈ P(JnK), HA is isomorphic to H{1,...,|A|} and thus to H|A|.
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“Wavelet basis”

I A basis FA of HA is generated via an algorithm adapted from
one recently introduced (Ragnarsson et al., 2011) to compute
a basis for the space Hn.

I Then ΨA = {φn(f ) | f ∈ FA} is a basis of WA.

I The full “wavelet basis” is the concatenation

Ψ = {ψ0} ∪
⋃

A∈P(JnK)

ΨA
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“Wavelet basis”

I For A ∈ P(JnK), let DA be the embedding of derangements on
A in Sn:

DA = {σ ∈ Sn | for all a ∈ A, σ(a) 6= a and for all b 6∈ A, σ(b) = b}.

I A permutation is written in standard cycle form if:
I each cycle is written with its smallest element in first position,
I the cycles are ordered in increasing value of their smallest

element.

I Define the bilinear operator � : L(Γn)× L(Γn)→ L(Γn) on
Dirac functions by

π � π′ = ππ′ − π′π.
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“Wavelet basis”

The input is a permutation τ ∈ DA written in standard cycle form,
and the output is a chain fτ ∈ HA.

I If τ = γ1 . . . γr is a product of cycles:

fγ1...γr = fγ1 . . . fγr

I If τ = γ is a cycle:

fγ is given by the following recursive algorithm
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“Wavelet basis” - Algorithm

Example for A = {1, 2, 3, 4, 5} and γ = (13524)

1 · 3 · 5 · 2 · 4
1 · 3 · 5 · 2 · 4

1 · (3 � 5) · 2 · 4
1 · (3 � 5) · (2 � 4)

(1 � (3 � 5)) · (2 � 4)
(1 � (3 � 5)) � (2 � 4)

f(13524) is obtained by expanding the operators �.
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Objectives

I Compute the coefficients cτ (f ) of the expansion of a function
f in the basis Ψ:

f =
∑
τ∈Sn

cτ (f )ψτ

I Find a meaningful “regularity” condition corresponding to
functions that are well approximated in this basis

⇒ Relies on the combinatorial structure of the construction
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