Multiresolution Analysis of Incomplete Rankings

Eric Sibony

with Stéphan Clémençon and Jérémie Jakubowicz

May 23rd 2014

3 N

 $\begin{array}{c} \mbox{Motivations}\\ \mbox{Why group-based harmonic analysis on } \mathfrak{S}_n \mbox{ is not adapted}\\ \mbox{Our results}\\ \mbox{The mathematical construction}\\ \mbox{Ongoing research} \end{array}$

Outline

Motivations

Why group-based harmonic analysis on \mathfrak{S}_n is not adapted

Our results

The mathematical construction

Ongoing research

 $\begin{array}{c} \mbox{Motivations}\\ \mbox{Why group-based harmonic analysis on } \mathfrak{S}_n \mbox{ is not adapted}\\ \mbox{Our results}\\ \mbox{The mathematical construction}\\ \mbox{Ongoing research} \end{array}$

Outline

Motivations

Why group-based harmonic analysis on \mathfrak{S}_n is not adapted

Our results

The mathematical construction

Ongoing research

- **→** → **→**

Motivations

Why group-based harmonic analysis on \mathfrak{S}_n is not adapted Our results The mathematical construction Ongoing research

Our purpose

Model ranking data.

同 ト イヨ ト イヨ

æ

 $\begin{array}{c} {\sf Motivations}\\ {\sf Why group-based harmonic analysis on } \mathfrak{S}_n \text{ is not adapted}\\ {\sf Our results}\\ {\sf The mathematical construction}\\ {\sf Ongoing research} \end{array}$

General types of ranking data

Complete set of items $\llbracket n \rrbracket = \{1, \ldots, n\}$ (no features).

Full rankings:

$$a_1\prec\cdots\prec a_n$$

Partial rankings:

$$a_{1,1},\ldots,a_{1,n_1}\prec\cdots\prec a_{r,1},\ldots,a_{r,n_r}$$
 with $\sum_{i=1}^r n_i = n$

Incomplete rankings:

$$a_1 \prec \cdots \prec a_k$$
 with $k < n$

- A - B - M

The case of full rankings

Full ranking $a_1 \prec ... \prec a_n \leftrightarrow$ Permutation σ such that $\sigma(a_i) = i$

同 ト イヨ ト イヨ

э

 $\begin{array}{c} {\sf Motivations}\\ {\sf Why group-based harmonic analysis on } \mathfrak{S}_n \text{ is not adapted}\\ {\sf Our results}\\ {\sf The mathematical construction}\\ {\sf Ongoing research} \end{array}$

The case of full rankings

Full ranking $a_1 \prec ... \prec a_n \leftrightarrow$ Permutation σ such that $\sigma(a_i) = i$

Statistical setting for observations: $\sigma_1, \ldots, \sigma_N \sim p$ i.i.d. where p is a probability distribution on \mathfrak{S}_n ,

$$p \in L(\mathfrak{S}_n) := \{f : \mathfrak{S}_n \to \mathbb{R}\}.$$

A 3 b

The case of full rankings

Full ranking $a_1 \prec ... \prec a_n \leftrightarrow$ Permutation σ such that $\sigma(a_i) = i$

Statistical setting for observations: $\sigma_1, \ldots, \sigma_N \sim p$ i.i.d. where p is a probability distribution on \mathfrak{S}_n ,

$$p \in L(\mathfrak{S}_n) := \{f : \mathfrak{S}_n \to \mathbb{R}\}.$$

Many approaches to characterize the structure of p

- Parametric modeling: Placket-Luce model, Mallows model, Thurstone model, . . .
- "Non-parametric" modeling: Kernel-based smoothing, Independence assumptions, Harmonic analysis, ...

・ 同 ト ・ ヨ ト ・ ヨ ト …

Group-based harmonic analysis on \mathfrak{S}_n

• For $\sigma \in \mathfrak{S}_n$, define the translation operator

$$T_{\sigma}: L(\mathfrak{S}_n) \to L(\mathfrak{S}_n)$$

 $f \mapsto f(\sigma^{-1}.)$

- ► The T_σ's do not commute but σ → T_σ is the left regular representation of S_n
- Hence the spectral decomposition

$$L(\mathfrak{S}_n)\cong \bigoplus_{\lambda\vdash n} d_\lambda S^\lambda$$

where

- the λ 's correspond to frequencies
- the S^{λ} are irreducible representations of \mathfrak{S}_n
- $d_{\lambda} = \dim S^{\lambda}$ and is also its multiplicity in the decomposition

 $\begin{array}{c} {\sf Motivations}\\ {\sf Why group-based harmonic analysis on } \mathfrak{S}_n \text{ is not adapted}\\ {\sf Our results}\\ {\sf The mathematical construction}\\ {\sf Ongoing research} \end{array}$

Group-based harmonic analysis on \mathfrak{S}_n

▶
$$\lambda \vdash n$$
 is a partition of n : $\lambda = (\lambda_1, ..., \lambda_r) \in \llbracket n \rrbracket^r$ with $\lambda_1 \ge \cdots \ge \lambda_r$ and such that $\sum_{i=1}^r \lambda_i = n$.

э

э

 $\begin{array}{c} {\rm Motivations}\\ {\rm Why\ group-based\ harmonic\ analysis\ on\ } \mathfrak{S}_n\ is\ not\ adapted\\ {\rm Our\ results}\\ {\rm The\ mathematical\ construction}\\ {\rm Ongoing\ research}\end{array}$

Group-based harmonic analysis on \mathfrak{S}_n

- ▶ $\lambda \vdash n$ is a partition of n: $\lambda = (\lambda_1, ..., \lambda_r) \in \llbracket n \rrbracket^r$ with $\lambda_1 \ge \cdots \ge \lambda_r$ and such that $\sum_{i=1}^r \lambda_i = n$.
- ▶ Dominance ordering on partitions of *n*: for λ = (λ₁,..., λ_r) and μ = (μ₁,..., μ_s) define

$$\lambda \trianglerighteq \mu$$
 if for all $j \in \{1, \ldots, r\}, \ \sum_{i=1}^{j} \lambda_i \ge \sum_{i=1}^{j} \mu_i.$

伺 ト イ ヨ ト イ ヨ ト

 $\begin{array}{c} & {\color{black} \mbox{Motivations}}\\ Why group-based harmonic analysis on <math>\mathfrak{S}_n$ is not adapted Our results Our results The mathematical construction Ongoing research

Group-based harmonic analysis on \mathfrak{S}_n

- ▶ $\lambda \vdash n$ is a partition of n: $\lambda = (\lambda_1, ..., \lambda_r) \in \llbracket n \rrbracket^r$ with $\lambda_1 \ge \cdots \ge \lambda_r$ and such that $\sum_{i=1}^r \lambda_i = n$.
- ▶ Dominance ordering on partitions of n: for λ = (λ₁,..., λ_r) and μ = (μ₁,..., μ_s) define

$$\lambda \trianglerighteq \mu$$
 if for all $j \in \{1, \ldots, r\}, \ \sum_{i=1}^{j} \lambda_i \ge \sum_{i=1}^{j} \mu_i.$

• The nested sequence of subspaces $S^{(n)} \subset S^{(n)} \oplus S^{(n-1,1)} \subset \cdots \subset \bigoplus_{\lambda \succeq \lambda_0} S^{\lambda} \subset \cdots \subset \bigoplus_{\lambda \trianglerighteq 1^n} S^{\lambda} = L(\mathfrak{S}_n)$

defines a *meaningful* approximation procedure for $L(\mathfrak{S}_n)$.

-

 $\begin{array}{c} {\sf Motivations}\\ {\sf Why group-based harmonic analysis on } {\mathfrak S}_n \text{ is not adapted}\\ {\sf Our results}\\ {\sf The mathematical construction}\\ {\sf Ongoing research}\end{array}$

General types of ranking data

Items	Ranks	Ranking form
Full rankings		
[[<i>n</i>]]	[[<i>n</i>]]	$a_1 \prec \cdots \prec a_n$ $\sigma : \llbracket n \rrbracket \rightarrow \llbracket n \rrbracket \text{ (bijective)}$ $\sigma^{-1}(i) = a_i$
Partial rankings		
[[<i>n</i>]]	$\{1,\ldots,r\}$	$\begin{vmatrix} a_{1,1}, \dots, a_{1,n_1} \prec \dots \prec a_{r,1}, \dots, a_{r,n_r} \\ \gamma : \llbracket n \rrbracket \to \{1, \dots, r\} \text{ (surjective)} \\ \gamma^{-1}(\{i\}) = \{a_{i,1}, \dots, a_{i,n_i}\} \end{vmatrix}$
Incomplete rankings		
$A \subset \llbracket n \rrbracket$ $ A \ge 2$	$\{1,\ldots, A \}$	$a_1 \prec \cdots \prec a_{ \mathcal{A} } \ \pi : \mathcal{A} ightarrow \{1, \dots, \mathcal{A} \}$ (bijective) $\pi^{-1}(i) = a_i$

э

э

 $\begin{array}{c} {\rm Motivations}\\ {\rm Why\ group-based\ harmonic\ analysis\ on\ } {\mathfrak S}_n\ {\rm is\ not\ adapted}\\ {\rm Our\ results}\\ {\rm The\ mathematical\ construction}\\ {\rm Ongoing\ research} \end{array}$

Application

Example: Recommendation system

- ▶ [[n]] represents the catalog of items (movie, songs, books, ...)
- Each user expresses preferences on subsets of items of the form

$$a_1 \prec \cdots \prec a_k$$

with $k \leq k_0$

► Knowing the preferences of a given user, in what order should we present a subset of items?

Principle *n* is big, of the order of 10^6 k_0 is small, of the order of 10 ($k_0 = 2$ for pairwise comparisons) $\begin{array}{c} \mbox{Motivations}\\ \mbox{Why group-based harmonic analysis on } \mathfrak{S}_n \mbox{ is not adapted}\\ \mbox{Our results}\\ \mbox{The mathematical construction}\\ \mbox{Ongoing research} \end{array}$

Formalism

Setting

- [[n]]: complete set of items
- $\mathcal{A} \subset \mathcal{P}(\llbracket n \rrbracket)$: observation design
- $(P_A)_{A \in \mathcal{A}}$: family of probability distributions on each \mathfrak{R}_A

Notations

For a finite set E,

$$\mathcal{P}(E) := \{A \subset E \mid |A| \ge 2\}$$

For $A \in \mathcal{P}(\llbracket n \rrbracket)$,

 $\mathfrak{R}_{\mathcal{A}} := \{\pi: \mathcal{A}
ightarrow \{1, \dots, |\mathcal{A}|\} \mid \pi \text{ bijective}\}: \text{ rankings on } \mathcal{A}$

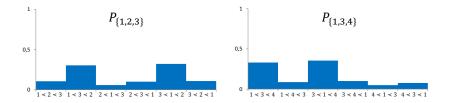
b) A (B) b)

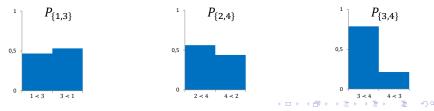
Motivations

Why group-based harmonic analysis on \mathfrak{S}_n is not adapted Our results The mathematical construction Ongoing research

Example

 $\textit{n}=\textit{4} \text{ and } \mathcal{A}=\{\{1,3\},\{2,4\},\{3,4\},\{1,2,3\},\{1,3,4\}\}$





E. Sibony - Telecom ParisTech Multiresolution Analysis of Incomplete Rankings

 $\begin{array}{c} {\sf Motivations}\\ {\sf Why group-based harmonic analysis on } \mathfrak{S}_n \text{ is not adapted}\\ {\sf Our results}\\ {\sf The mathematical construction}\\ {\sf Ongoing research} \end{array}$

Consistency assumption

Data arise in the space

$$(P_A)_{A\in\mathcal{A}}\in\bigoplus_{A\in\mathcal{A}}L(\mathfrak{R}_A).$$

Consistency assumption: $(P_A)_{A \in \mathcal{A}}$ is a sub-family of a family $(P_A)_{A \in \mathcal{P}(\llbracket n \rrbracket)}$ that satisfies for any $A = \{a_1, \ldots, a_k\} \in \mathcal{P}(\llbracket n \rrbracket)$ with k < n and $b \in \llbracket n \rrbracket \setminus A$,

$$P_{A}(a_{i_{1}} \prec \ldots \prec a_{i_{k}}) = P_{A \cup \{b\}}(a_{i_{1}} \prec \ldots \prec a_{i_{k}} \prec b) + \ldots$$
$$+ P_{A \cup \{b\}}(a_{i_{1}} \prec b \prec \ldots \prec a_{i_{k}}) + P_{A \cup \{b\}}(b \prec a_{i_{1}} \prec \ldots \prec a_{i_{k}}). \quad (*)$$

Example

$$P_{\{1,3\}}(1 \prec 3) = P_{\{1,2,3\}}(1 \prec 3 \prec 2) + P_{\{1,2,3\}}(1 \prec 2 \prec 3) + P_{\{1,2,3\}}(2 \prec 1 \prec 3)$$

 $\begin{array}{c} {\rm Motivations}\\ {\rm Why\ group-based\ harmonic\ analysis\ on\ } {\mathfrak{S}}_n\ {\rm is\ not\ adapted}\\ {\rm Our\ results}\\ {\rm The\ mathematical\ construction}\\ {\rm Ongoing\ research} \end{array}$

Consistency assumption

Assumption (*) \Leftrightarrow There exists *p* probability distribution on \mathfrak{S}_n such that for all $A \in \mathcal{A}$,

$$\mathcal{P}_{\mathcal{A}}(\pi) = \sum_{\sigma \in \mathfrak{S}_n(\pi)} \mathcal{p}(\sigma) \hspace{1em} ext{for all } \pi \in \mathfrak{R}_{\mathcal{A}},$$

where

 $\mathfrak{S}_n(\pi) = \{ \sigma \in \mathfrak{S}_n \mid \pi(a) < \pi(b) \Rightarrow \sigma(a) < \sigma(b), \text{ for } a, b \in \llbracket n \rrbracket \}$

is the set of linear extensions of π on $\llbracket n \rrbracket$.

伺 ト く ヨ ト く ヨ ト

 $\begin{array}{c} {\sf Motivations}\\ {\sf Why group-based harmonic analysis on } \mathfrak{S}_n \text{ is not adapted}\\ {\sf Our results}\\ {\sf The mathematical construction}\\ {\sf Ongoing research} \end{array}$

Consistency assumption

Marginal operator on $A \in \mathcal{P}(\llbracket n \rrbracket)$:

$$egin{aligned} &M_{\mathcal{A}}: L(\mathfrak{S}_n)
ightarrow L(\mathfrak{R}_{\mathcal{A}}) \ &M_{\mathcal{A}}f(\pi) = \sum_{\sigma \in \mathfrak{S}_n(\pi)} f(\sigma) \ & ext{ for all } \pi \in \mathfrak{R}_{\mathcal{A}}. \end{aligned}$$

Example

For n = 3, $f \in L(\mathfrak{S}_3)$,

 $M_{\{1,3\}}f(1 \prec 3) = f(1 \prec 3 \prec 2) + f(1 \prec 2 \prec 3) + f(2 \prec 1 \prec 3).$

For a probability distribution p on \mathfrak{S}_n and $A = \{a_1, \ldots, a_k\}$,

$$M_A p(a_{i_1} \prec \cdots \prec a_{i_k}) \equiv \mathbb{P}\left[a_{i_1} \prec \cdots \prec a_{i_k} | a_1, \ldots, a_k\right].$$

伺 ト イ ヨ ト イ ヨ ト

 $\begin{array}{c} {\rm Motivations}\\ {\rm Why\ group-based\ harmonic\ analysis\ on\ } \mathfrak{S}_n\ is\ not\ adapted\\ {\rm Our\ results}\\ {\rm The\ mathematical\ construction}\\ {\rm Ongoing\ research}\end{array}$

Consistency assumption

Global marginal operator on \mathcal{A} :

$$M_{\mathcal{A}}: L(\mathfrak{S}_n) \to \bigoplus_{A \in \mathcal{A}} L(\mathfrak{R}_A)$$

 $f \mapsto (M_A f)_{A \in \mathcal{A}}.$

Assumption (*) \Leftrightarrow there exists p probability distribution on \mathfrak{S}_n such that

$$M_{\mathcal{A}}p=(P_{\mathcal{A}})_{\mathcal{A}\in\mathcal{A}}.$$

Space for data analysis:

$$\mathbb{M}_{\mathcal{A}} = \{(f_{\mathcal{A}})_{\mathcal{A} \in \mathcal{A}} \in \bigoplus_{A \in \mathcal{A}} L(\mathfrak{R}_{A}) \mid (f_{\mathcal{A}})_{A \in \mathcal{A}} \text{ satisfies } (*)\} = M_{\mathcal{A}}(L(\mathfrak{S}_{n})).$$

3 N

 $\begin{array}{c} {\rm Motivations}\\ {\rm Why\ group-based\ harmonic\ analysis\ on\ } \mathfrak{S}_n\ is\ not\ adapted\\ {\rm Our\ results}\\ {\rm The\ mathematical\ construction}\\ {\rm Ongoing\ research}\end{array}$

Define meaningful approximation procedures in the space $\mathbb{M}_{\mathcal{A}}$, for any observation design \mathcal{A} .

/□ ▶ < 글 ▶ < 글

 $\begin{array}{c} \mbox{Motivations}\\ \mbox{Why group-based harmonic analysis on } \mathfrak{S}_n \mbox{ is not adapted}\\ \mbox{Our results}\\ \mbox{The mathematical construction}\\ \mbox{Ongoing research} \end{array}$

Outline

Motivations

Why group-based harmonic analysis on \mathfrak{S}_n is not adapted

Our results

The mathematical construction

Ongoing research

A 3 b

Group-based harmonic analysis on \mathfrak{S}_n - Interpretation

For
$$\lambda = (\lambda_1, \ldots, \lambda_r) \vdash n$$
, define

 $\mathsf{Part}_{\lambda}(\llbracket n \rrbracket) = \{(A_1, \dots, A_r) \text{ ordered partition of } \llbracket n \rrbracket \mid |A_i| = \lambda_i\}$

equipped with the action of \mathfrak{S}_n :

$$\sigma \cdot (A_1,\ldots,A_r) = (\sigma(A_1),\ldots,\sigma(A_r)).$$

Harmonic analysis on \mathfrak{S}_n - Interpretation

Let p be a probability distribution on \mathfrak{S}_n and Σ be a random permutation of law p. If an event \mathcal{E} corresponds to a subset $S \subset \mathfrak{S}_n$, we define

$$\mathbb{P}[\mathcal{E}] = \sum_{\sigma \in S} p(\sigma).$$

For $\lambda \vdash n$ and $\mathcal{B}_0 \in \operatorname{Part}_{\lambda}(\llbracket n \rrbracket)$, the λ -marginal in \mathcal{B}_0 of p is the probability distribution on $\operatorname{Part}_{\lambda}(\llbracket n \rrbracket)$:

$$(\mathbb{P}\left[\Sigma \cdot \mathcal{B}_0 = \mathcal{B}\right])_{\mathcal{B} \in \mathsf{Part}_{\lambda}(\llbracket n \rrbracket)}$$

 $\begin{array}{c} \mbox{Motivations}\\ \mbox{Why group-based harmonic analysis on } \mathfrak{S}_n \mbox{ is not adapted}\\ \mbox{Our results}\\ \mbox{The mathematical construction}\\ \mbox{Ongoing research} \end{array}$

Harmonic analysis on \mathfrak{S}_n - Interpretation

Example: $\lambda = (n - 1, 1)$

 $\begin{aligned} \mathsf{Part}_{(n-1,1)}(\llbracket n \rrbracket) &= \{(\llbracket n \rrbracket \setminus \{i\}, \{i\}) \mid i \in \llbracket n \rrbracket\} \cong \{i \in \llbracket n \rrbracket\} \\ (n-1,1)\text{-marginals are the probability distributions} \\ (\mathbb{P}[\Sigma(i) = j])_{j \in \llbracket n \rrbracket} \end{aligned}$

i.e. the laws of the random variables $\Sigma(i)$, for $i \in [n]$.

伺 ト イ ヨ ト イ ヨ ト

Motivations Why group-based harmonic analysis on \mathfrak{S}_n is not adapted Our results The mathematical construction Ongoing research

Harmonic analysis on \mathfrak{S}_n - Interpretation

Example: $\lambda = (n-2,2)$

(n-2,2)-marginals are the probability distributions

 $(\mathbb{P}[\Sigma(\{i_1, i_2\}) = \{j_1, j_2\}])_{1 \le j_1 < j_2 \le n}$

i.e. the laws of the random variables $\{\Sigma(i_1), \Sigma(i_2)\}$, for $1 \le i_1 < i_2 \le n$.

Example: $\lambda = (n - 2, 1, 1)$ (n - 2, 1, 1)-marginals are the probability distributions

 $(\mathbb{P}[\Sigma((i_1, i_2)) = (j_1, j_2)])_{1 \le j_1 < j_2 \le n}$

i.e. the laws of the random variables $(\Sigma(i_1), \Sigma(i_2))$, for $1 \le i_1 < i_2 \le n$.

 $\begin{array}{c} \mbox{Motivations}\\ \mbox{Why group-based harmonic analysis on \mathfrak{S}_n is not adapted\\ \mbox{Our results}\\ \mbox{The mathematical construction}\\ \mbox{Ongoing research} \end{array}$

Information localization

 S_n-based harmonic analysis localizes "absolute rank information":

$$\mathbb{P}[\Sigma(a_1)=i_1,\ldots,\Sigma(a_k)=i_k].$$

Incomplete rankings analysis requires to localize "relative rank information":

$$\mathbb{P}[\Sigma(a_1) < \cdots < \Sigma(a_k)].$$

3 N

Information localization - Example

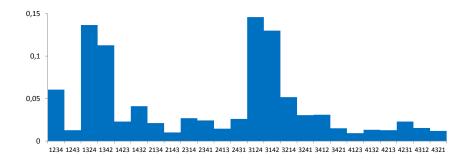


Figure: full distribution on \mathfrak{S}_4

 $\begin{array}{c} \mbox{Motivations}\\ \mbox{Why group-based harmonic analysis on \mathfrak{S}_n is not adapted\\ \mbox{Our results}\\ \mbox{The mathematical construction}\\ \mbox{Ongoing research} \end{array}$

Information localization - Example

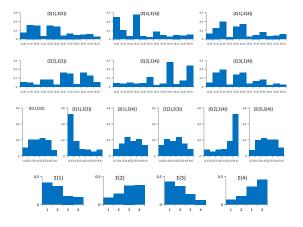
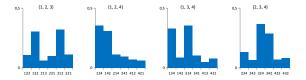


Figure: λ -marginals for $\lambda = (3, 1), (2, 2), (2, 1, 1)$

* E > * E >

э

Information localization - Example



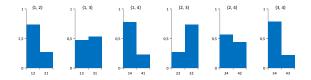


Figure: marginals on subsets $A \subset \llbracket 4 \rrbracket$ with $|A| \ge 2$

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

 $\begin{array}{c} \mbox{Motivations}\\ \mbox{Why group-based harmonic analysis on } \mathfrak{S}_n \mbox{ is not adapted}\\ \mbox{Our results}\\ \mbox{The mathematical construction}\\ \mbox{Ongoing research} \end{array}$

Outline

Motivations

Why group-based harmonic analysis on \mathfrak{S}_n is not adapted

Our results

The mathematical construction

Ongoing research

/⊒ > < ∃ >

Decomposition of $L(\mathfrak{S}_n)$

Let $V^0 = \{f \text{ constant on } \mathfrak{S}_n\} = \mathbb{R}\psi_0 \text{ with } \psi_0 = \mathbb{1}_{\mathfrak{S}_n}$. Theorem

$$L(\mathfrak{S}_n) = V^0 \oplus \bigoplus_{A \in \mathcal{P}(\llbracket n \rrbracket)} W_A,$$

where W_A is a subspace of $L(\mathfrak{S}_n)$ that localizes the information specific to the marginal on A an not to the others:

- 1. $W_A \cap \ker M_A = \{0\}$
- 2. $W_A \subset \ker M_B$ for all $B \in \mathcal{P}(\llbracket n \rrbracket)$ such that $A \not\subset B$

・ 同 ト ・ ヨ ト ・ ヨ ト

Decomposition of a function $f \in L(\mathfrak{S}_n)$

Corollary For $f \in L(\mathfrak{S}_n)$, denote by

$$f = \frac{\sum_{\sigma \in \mathfrak{S}_n} f(\sigma)}{n!} + \sum_{A \in \mathcal{P}(\llbracket n \rrbracket)} f_A$$

its associated decomposition. Then for all $B \in \mathcal{P}(\llbracket n \rrbracket)$,

$$M_B f = \frac{\sum_{\sigma \in \mathfrak{S}_n} f(\sigma)}{|B|!} + \sum_{A \in \mathcal{P}(B)} M_B f_A.$$

A 3 b

Dimension

Theorem For any $A \in \mathcal{P}(\llbracket n \rrbracket)$,

dim $W_A = d_{|A|}$

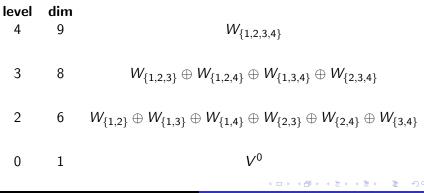
where d_k is the number of derangements (fixed-point free permutations) on k elements:

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Multiresolution interpretation - Example

$$L(\mathfrak{S}_4) = V^0 \oplus \bigoplus_{k=2}^4 \bigoplus_{|B|=k} W_A$$



Wavelet framework

We exhibit an explicit "wavelet basis" Ψ of $L(\mathfrak{S}_n)$ of the form

$$\Psi = \{\psi_0\} \cup \bigcup_{A \in \mathcal{P}(\llbracket n \rrbracket)} \Psi_A$$

where Ψ_B is a basis of W_B for all $B \in \mathcal{P}(\llbracket n \rrbracket)$.

For any observation design $\mathcal{A} \subset \mathcal{P}(\llbracket n \rrbracket)$,

$$M_{\mathcal{A}}(\Psi) = \{M_{\mathcal{A}}(\psi_0)\} \cup \bigcup_{B \in \bigcup_{A \in \mathcal{A}} \mathcal{P}(A)} M_{\mathcal{A}}(\Psi_B)$$

is a basis of $\mathbb{M}_{\mathcal{A}} = M_{\mathcal{A}}(L(\mathfrak{S}_n)).$

伺 ト イ ヨ ト イ ヨ ト

Wavelet framework - Example

 $n=4 \text{ and } \mathcal{A}=\{\{1,3\},\{2,4\},\{3,4\},\{1,2,3\},\{1,3,4\}\}.$

 $W_{\{1,2,3,4\}}$

$$\begin{split} & \mathsf{W}_{\{1,2,3\}} \oplus W_{\{1,2,4\}} \oplus \mathsf{W}_{\{1,3,4\}} \oplus W_{\{2,3,4\}} \\ & \mathsf{W}_{\{1,2\}} \oplus \mathsf{W}_{\{1,3\}} \oplus \mathsf{W}_{\{1,4\}} \oplus \mathsf{W}_{\{2,3\}} \oplus \mathsf{W}_{\{2,4\}} \oplus \mathsf{W}_{\{3,4\}} \\ & \mathsf{V}^0 \end{split}$$

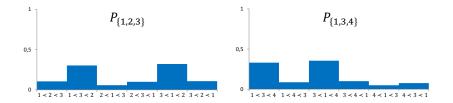
- A is in orange bold
- $\bigcup_{A \in \mathcal{A}} \mathcal{P}(A)$ is in **bold**
- dim $\mathbb{M}_{\mathcal{A}} = 1 + \sum_{B \in \bigcup_{A \in \mathcal{A}} \mathcal{P}(A)} d_{|B|} = 1 + 6 \times 1 + 2 \times 2 = 11$

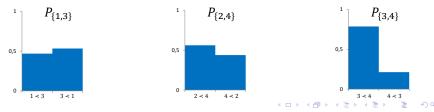
くほし くほし くほし

 $\begin{array}{c} & \text{Motivations} \\ \text{Why group-based harmonic analysis on } \mathfrak{S}_n \text{ is not adapted} \\ & \text{Our results} \\ & \text{The mathematical construction} \\ & \text{Ongoing research} \end{array}$

Wavelet framework - Example

The following family of distributions...

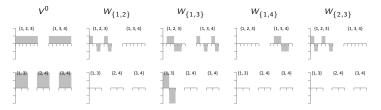


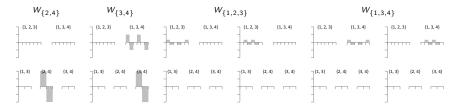


E. Sibony - Telecom ParisTech Multiresolution Analysis of Incomplete Rankings

Wavelet framework - Example

... can be expanded in the wavelet basis





< 🗇 > < 🖃 >

- ∢ ≣ ▶

э

Outline

Motivations

Why group-based harmonic analysis on \mathfrak{S}_n is not adapted

Our results

The mathematical construction

Ongoing research

Injective words

An injective word over $\llbracket n \rrbracket$ is an expression of the form $\omega_1 \dots \omega_k$ where the ω_i 's are distinct elements of $\llbracket n \rrbracket$.

- $c(\omega) := \{\omega_1, \dots, \omega_k\}$ is the content of ω
- $|\omega| := |c(\omega)|$ is the length of ω

We denote by $\overline{0}$ the empty word: $c(\overline{0}) = \emptyset$ and $|\overline{0}| = 0$, and define the sets

- Γ_n: set of all injective words on [[n]]
- Γ^k : set of injective words of size k
- $\Gamma(A)$: set of injective words of content A

$$\Gamma_n = \bigsqcup_{k=0}^n \Gamma^k = \bigsqcup_{k=0}^n \bigsqcup_{|A|=k} \Gamma(A)$$

伺 ト イヨト イヨト

Representation as injective words

See incomplete rankings as injective words:

 $a_1 \prec a_2 \prec \cdots \prec a_k \quad \rightarrow \quad a_1 a_2 \dots a_k$

 $\Rightarrow \mathfrak{R}_A \cong \Gamma(A) \text{ for } A \in \mathcal{P}(\llbracket n \rrbracket)$

See functions in L(Γ(A)) as functions in L(Γ_n) that are null for π ∈ Γ_n \ Γ(A), and denote them as free linear combinations:

$$\sum_{\pi\in\Gamma_n}f(\pi)\delta_\pi\to\sum_{\pi\in\Gamma_n}f(\pi)\pi$$

Rq: 0 is the function that is null for every π ∈ Γ_n while 0 is the Dirac function in 0

イロト イポト イラト イラト

Representation as injective words

The space $L(\mathfrak{S}_n)$, the marginal spaces $L(\mathfrak{R}_A)$ for $A \in \mathcal{P}(\llbracket n \rrbracket)$ and the spaces $L(\Gamma(A))$ for $|A| \leq 1$ are all embedded in $L(\Gamma_n)$:

$L(\mathfrak{S}_4)$

$$L\left(\mathfrak{R}_{\{1,2,3\}}\right) \oplus L\left(\mathfrak{R}_{\{1,2,4\}}\right) \oplus L\left(\mathfrak{R}_{\{1,3,4\}}\right) \oplus L\left(\mathfrak{R}_{\{2,3,4\}}\right)$$
$$L\left(\mathfrak{R}_{\{1,2\}}\right) \oplus L\left(\mathfrak{R}_{\{1,3\}}\right) \oplus L\left(\mathfrak{R}_{\{1,4\}}\right) \oplus L\left(\mathfrak{R}_{\{2,3\}}\right) \oplus L\left(\mathfrak{R}_{\{2,4\}}\right) \oplus L\left(\mathfrak{R}_{\{3,4\}}\right)$$
$$L(\Gamma(\{1\})) \oplus L(\Gamma(\{2\})) \oplus L(\Gamma(\{3\})) \oplus L(\Gamma(\{4\}))$$
$$L(\Gamma(\overline{0}))$$

A 3 1

Deletion operator

Definition

For $\pi \in \Gamma_n$ and $a \in c(\pi)$, denote by $\pi \setminus \{a\}$ the word obtained by deleting the letter *a* in the word π .

Let $\rho_a : L(\Gamma_n) \to L(\Gamma_n)$ be the linear operator defined on a Dirac function π by

$$arrho_{m{a}}\pi=\left\{egin{arrho} \pi\setminus\{m{a}\} & ext{ if }m{a}\inm{c}(\pi)\ 0 & ext{ otherwise.} \end{array}
ight.$$

For $a_1, a_2 \in [\![n]\!]$, it is obvious that $\varrho_{a_1}\varrho_{a_2} = \varrho_{a_2}\varrho_{a_1}$. This allows to define, for $A = \{a_1, \ldots, a_k\} \subset [\![n]\!]$, $\varrho_A = \varrho_{a_1} \ldots \varrho_{a_k}$. We set by convention $\varrho_{\emptyset} x = x$ for all $x \in L(\Gamma_n)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Marginal and deletion operator

For
$$A \in \mathcal{P}(\llbracket n \rrbracket)$$
 and $\pi \in \mathfrak{R}_A$,
 $\sigma \in \mathfrak{S}_n(\pi) \Leftrightarrow \text{ for all } (a, b) \in \llbracket n \rrbracket^2, \pi(a) < \pi(b) \Rightarrow \sigma(a) < \sigma(b)$
 $\Leftrightarrow \pi \text{ is a subword of } \sigma$
 $\Leftrightarrow \sigma \setminus (\llbracket n \rrbracket \setminus A) = \pi$

This implies that

 $M_{A} = \varrho_{\llbracket n \rrbracket \setminus A}$

- E

э

э

Projective system

The family of spaces $(L(\Gamma(A)))_{A \subset [n]}$ equipped with the family of operators $(\varrho_{B \setminus A})_{A \subset B \subset [n]}$ is a projective system, *i.e.* for all $A \subset B \subset C \subset [n]$,

•
$$\varrho_{B\setminus A}: L(\Gamma(B)) \to L(\Gamma(A)),$$

• $\varrho_{A \setminus A} x = x$ for all $x \in L(\Gamma(A))$,

$$\varrho_{B\setminus A}\varrho_{C\setminus B} = \varrho_{C\setminus A}.$$

30.00



< 日 > < 同 > < 三 > < 三 >

3

Spaces W_A

For $A \in \mathcal{P}(\llbracket n \rrbracket)$, the space $H_A = \{f \in L(\mathfrak{R}_A) \mid M_B f = 0 \text{ for all } B \subsetneq A\}$ $= \{f \in L(\mathfrak{R}_A) \mid M_B f = 0 \text{ for all } B \subset A \text{ with } |B| = |A| - 1\}$ $= \{f \in L(\Gamma(A)) \mid \varrho_a f = 0 \text{ for all } a \in A\}$ $= L(\Gamma(A)) \cap \bigcap_{a \in A} \ker \varrho_a$

localizes information of scale |A| on A. We define

$$W_{\mathcal{A}}=\phi_n(H_{\mathcal{A}}),$$

where ϕ_n is an embedding operator $L(\Gamma_n) \to L(\mathfrak{S}_n)$.

 $\begin{array}{c} & \text{Motivations} \\ \text{Why group-based harmonic analysis on } \mathfrak{S}_n \text{ is not adapted} \\ & \text{Our results} \\ & \text{The mathematical construction} \\ & \text{Ongoing research} \end{array}$

Concatenation product

Definition

For $\pi = a_1 \dots a_r$ and $\pi' = b_1 \dots b_s$ such that $c(\pi) \cap c(\pi') = \emptyset$, define

$$\pi\pi'=a_1\ldots a_rb_1\ldots b_s.$$

It is extended as the bilinear operator $L(\Gamma_n) \times L(\Gamma_n) \rightarrow L(\Gamma_n)$ defined on Dirac functions by

$$(\pi,\pi')\mapsto egin{cases} \pi\pi' & ext{ if } c(\pi)\cap c(\pi')=\emptyset, \ 0 & ext{ otherwise.} \end{cases}$$

- 4 B b 4 B b

Embedding operator

For $\omega \in \Gamma_n$, let i_{ω} and j_{ω} be the two operators on $L(\Gamma_n)$ defined on the Dirac functions by

 $\mathfrak{i}_{\omega}:\pi\mapsto\omega\pi$ and $\mathfrak{j}_{\omega}:\pi\mapsto\pi\omega$.

Then define

$$\phi_{\mathbf{n}} = \sum_{\substack{\omega_1, \omega_2 \in \Gamma_n \\ c(\omega_1) \sqcup c(\omega_2) \sqcup c(\pi) = \llbracket \mathbf{n} \rrbracket}} \mathfrak{i}_{\omega_1} \mathfrak{j}_{\omega_2}.$$

Example

 $\phi_5(143) = 25143 + 52143 + 21435 + 51432 + 14325 + 14352.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof

Lemma For $\omega \in \Gamma_n$ and $a \in \llbracket n \rrbracket \setminus c(\omega)$,

$$\varrho_{a}\mathfrak{i}_{\omega}=\mathfrak{i}_{\omega}\varrho_{a}$$
 and $\varrho_{a}\mathfrak{j}_{\omega}=\mathfrak{j}_{\omega}\varrho_{a}.$

Proposition

For $A \in \mathcal{P}(\llbracket n \rrbracket)$, W_A localizes the information specific to A:

$$W_A \cap \ker M_A = \{0\}$$
 and $W_A \subset \bigcap_{\substack{B \in \mathcal{P}(\llbracket n \rrbracket) \\ B \supset A}} \ker M_B.$

同 ト イ ヨ ト イ ヨ ト

Proof

Define
$$L_0(\mathfrak{S}_n) = \{ f \in L(\mathfrak{S}_n) \mid \sum_{\sigma \in \mathfrak{S}_n} f(\sigma) = 0 \}$$
, so that:
 $L(\mathfrak{S}_n) = V^0 \stackrel{\perp}{\oplus} L_0(\mathfrak{S}_n).$

Proposition

The spaces W_A are in direct sum in $L_0(\mathfrak{S}_n)$.

Remark

The sum is not orthogonal.

Proof

Theorem (Reiner et al., 2013) For all $A \in \mathcal{P}(\llbracket n \rrbracket)$, $\dim H_A = d_{|A|}$.

The proof of the decomposition is concluded by a dimensional argument:

$$\dim\left(V^{0} \oplus \bigoplus_{A \in \mathcal{P}(\llbracket n \rrbracket)} W_{A}\right) = 1 + \sum_{k=2}^{n} \binom{n}{k} d_{k}$$
$$= \sum_{k=0}^{n} \binom{n}{k} d_{n-k} = n! = \dim L(\mathfrak{S}_{n}).$$

伺下 イヨト イヨ

Link with algebraic topology

The spaces $L(\Gamma^k)$ are canonically equipped with the operators $\partial_k : L(\Gamma^k) \to L(\Gamma^{k-1})$ defined on Dirac functions by

$$\partial_k(\pi_1\ldots\pi_k)=\sum_{m=1}^k(-1)^{m-1}\pi_1\ldots\pi_{m-1}\pi_{m+1}\ldots\pi_k,$$

for $k \in \{1, ..., n\}$. They are *boundary* operators: $\partial_k \partial_{k+1} = 0$. The sequence $(L(\Gamma^k), \partial_k)_{1 \le k \le n}$ is the complex of injective words:

$$L(\Gamma^n) \stackrel{\partial_n}{\to} L(\Gamma^{n-1}) \stackrel{\partial_{n-1}}{\to} \dots \stackrel{\partial_2}{\to} L(\Gamma^1) \stackrel{\partial_1}{\to} L(\Gamma^0)$$

 $\begin{array}{c} & \text{Motivations} \\ \text{Why group-based harmonic analysis on } \mathfrak{S}_n \text{ is not adapted} \\ & \text{Our results} \\ & \text{The mathematical construction} \\ & \text{Ongoing research} \end{array}$

Link with algebraic topology

Operators ∂_k are interpreted as "divergence" operators

- ker ∂_k is the k^{th} cycle space
- im ∂_{k+1} is the k^{th} boundary space
- $\mathcal{H}_k = \ker \partial_k / \operatorname{im} \partial_{k+1}$ is the k^{th} homology space

Spaces \mathcal{H}_k have been well-studied in the literature. In particular:

•
$$\mathcal{H}_k = 0$$
 for $k \in \{1, ..., n-1\}$,

• dim $\mathcal{H}_n = d_n$, where $\mathcal{H}_n := \ker \partial_n$.

Link with algebraic topology

We denote the sign of a permutation $\pi \in \Gamma^n$ by $sgn(\pi)$ and define the operator Sgn : $L(\mathfrak{S}_n) \to L(\mathfrak{S}_n)$ on Dirac functions by

$$\operatorname{Sgn}(\pi) = \operatorname{sgn}(\pi)\pi.$$

Proposition

The operator Sgn is an involution between $H_{[n]}$ and \mathcal{H}_n . In particular,

$$\dim H_{\llbracket n \rrbracket} = \dim \mathcal{H}_n = d_n.$$

For $A \in \mathcal{P}(\llbracket n \rrbracket)$, H_A is isomorphic to $H_{\{1,...,|A|\}}$ and thus to $\mathcal{H}_{|A|}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

"Wavelet basis"

- ► A basis *F_A* of *H_A* is generated via an algorithm adapted from one recently introduced (Ragnarsson et al., 2011) to compute a basis for the space *H_n*.
- Then $\Psi_A = \{\phi_n(f) \mid f \in \mathcal{F}_A\}$ is a basis of W_A .
- The full "wavelet basis" is the concatenation

$$\Psi = \{\psi_0\} \cup \bigcup_{A \in \mathcal{P}(\llbracket n \rrbracket)} \Psi_A$$

"Wavelet basis"

For A ∈ P([[n]]), let D_A be the embedding of derangements on A in S_n:

 $\mathcal{D}_{A} = \{ \sigma \in \mathfrak{S}_{n} \mid \text{for all } a \in A, \sigma(a) \neq a \text{ and for all } b \notin A, \sigma(b) = b \}$

A permutation is written in standard cycle form if:

- each cycle is written with its smallest element in first position,
- the cycles are ordered in increasing value of their smallest element.
- ▶ Define the bilinear operator ◊ : L(Γ_n) × L(Γ_n) → L(Γ_n) on Dirac functions by

$$\pi \diamond \pi' = \pi \pi' - \pi' \pi.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

"Wavelet basis"

The input is a permutation $\tau \in \mathcal{D}_A$ written in standard cycle form, and the output is a chain $f_{\tau} \in H_A$.

• If $\tau = \gamma_1 \dots \gamma_r$ is a product of cycles:

$$f_{\gamma_1\ldots\gamma_r}=f_{\gamma_1}\ldots f_{\gamma_r}$$

• If $\tau = \gamma$ is a cycle:

 f_{γ} is given by the following recursive algorithm

伺 ト イ ヨ ト イ ヨ ト

"Wavelet basis" - Algorithm

Example for $A = \{1, 2, 3, 4, 5\}$ and $\gamma = (13524)$

$$\begin{array}{c}
1 \cdot 3 \cdot 5 \cdot 2 \cdot 4 \\
1 \cdot 3 \cdot 5 \cdot 2 \cdot 4 \\
1 \cdot (3 \diamond 5) \cdot 2 \cdot 4 \\
1 \cdot (3 \diamond 5) \cdot (2 \diamond 4) \\
(1 \diamond (3 \diamond 5)) \cdot (2 \diamond 4) \\
(1 \diamond (3 \diamond 5)) \diamond (2 \diamond 4)
\end{array}$$

 $f_{(13524)}$ is obtained by expanding the operators \diamond .

- - E - - E

Outline

Motivations

Why group-based harmonic analysis on \mathfrak{S}_n is not adapted

Our results

The mathematical construction

Ongoing research

A 3 b

Objectives

Compute the coefficients c_τ(f) of the expansion of a function f in the basis Ψ:

$$f=\sum_{\tau\in\mathfrak{S}_n}c_\tau(f)\psi_\tau$$

- Find a meaningful "regularity" condition corresponding to functions that are well approximated in this basis
 - \Rightarrow Relies on the combinatorial structure of the construction

伺 ト イ ヨ ト イ ヨ