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In software

Definition (Compatible lattice)
A collection of finite fields Fpn for any n � 1;
A collection of morphisms Fpm ,! Fpn whenever m jn .

Fact
Given a lattice, any element of �Fp can be represented as an
element of a finite field in the lattice.

(Lenstra, De Smit & Lenstra) 
(n3)

There exist a determinisitic algorithm that constructs a
compatible lattice in time polynomial in log p and n , where n is
the degree of the largest computed extension of Fp .
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Efficient construction of lattices,
Efficient field operations.

Our interest

Goals:
Constructing fields:

I Build irreducible polynomials in quasi-linear time.
Describing embeddings:

I Quasi-linear time and memory in the degree of the extension.
Evaluating embeddings:

I Replace linear algebra by polynomial arithmetic.

Application examples:
General: finite field arithmetic, unramified extensions of Qp .
Computing isogenies between elliptic curves, DF, 2011.
Point-counting in genus 2, Gaudry and Schost, 2012.
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Known constructions

Construct fields arbitrarily + compute embeddings
Describe the embeddings

I Factor minimal polynomials,
I Allombert’s isomorphism algorithm (in Pari?).
I Rains’ isomorphism algorithm (unpublished, in Magma),

Evaluate the embeddings
I Linear algebra,
I Map generators (polynomial arithmetic).

Construct fields defined by special polynomials
(pseudo)-Conway polynomials,
Cyclotomy theory (De Smit & Lenstra and generalizations),
Fancy (and still limited) constructions (this talk).
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Towers

Luca De Feo (UVSQ) Algorithms for �Fp BAC, Sep 20, 2013 6 / 24



Univariate vs. Multivariate
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Summary of Main Results

Previous work
Artin-Schreier (Cantor, Couveignes, DF & Schost): q fixed, ` = p small;

Dyadic towers (Doliskani & Schost): q fixed, ` = 2;
~O(`i+c) operations in Fq , c 2 f1; 2g.

This work: objective
q fixed, ` small: ~O(`i ) operations in Fq ;

Limit additional factors in ` and q as much as possible.

Condition Initialization Qi;Ti Embedding eval.
q = 1 mod ` O(1) O(`i ) O(`i )

q = �1 mod ` O(1) O(`i ) O(M(`i ) log(`i ))
� O(`2) O(M(`i+1)M(`) log(`i )2) O(M(`i+1)M(`) log(`i ))

4` � q1=4 ~O(`3) (bit) O(M(`i ) log(`i )) O(M(`i ) log(`i ))
4` � q1=4 ~O(M(`)) O(M(`i ) log(`i )) O(M(`i ) log(`i ))

Luca De Feo (UVSQ) Algorithms for �Fp BAC, Sep 20, 2013 8 / 24



Quasi-cyclotomic towers
(inspired by Shoup, Allombert, De Smit and Lenstra)
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by resultants.
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Quasi-cyclotomic towers

Generic algorithm
Perform all computations in the cyclotomic tower;
Construction and embedding evaluation: penalty only ~O(`2).

Trivial case: ` j (q � 1), r = 1
Kummer extensions

Qi = X `i

i � y0 and Ti = X `
i �Xi�1

Embeddings are trivial.
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Quasi-cyclotomic towers

Generic algorithm
Perform all computations in the cyclotomic tower;
Construction and embedding evaluation: penalty only ~O(`2).

Special case: ` j (q + 1), r = 2
By direct resultant computation

Qi(Xi) = Y `i + Y �`i � x0 mod Y 2 �XiY + 1

Similar form for Ti .
Qi can be computed in O(M(`i)); a better algorithm later.
Embeddings: later.
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Towers from irreducible fibers (Cou-
veignes and Lercier, 2011)
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Chebyshev case: ` j (q + 1)

Consider the map � : x 7! x `

F
�
q

F
�
q2

T2

�jF�q bijective;
�jF�

q2
non surjective;

T2 � F�q2 algebraic torus of
cardinality q + 1.

Tn(k) �= f� 2 L� j NL=F (�) = 1 for all k � F ( Lg:
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Towers from algebraic tori (Pell conics)

By Weil descent, T2 is isomorphic to a Pell conic;
Multiplication in �Fq induces a group law on the points.

N

P

Q

P + Q

Pell conic:

C : x 2
��y2 = 4

Addition: For P = (x1; y1) and Q =
(x2; y2),

P �Q =

�
x1x2 +�y1y2

2
;

x1y2 + x2y1

2

�
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Towers from algebraic tori

T2 ! Pell conic C ,
multiplication in Fq2 ! addition in C ,
`-th power ! scalar multiplication [`].

Lemma
The abscissa of [n ]P is given by Cn(x1), where Cn 2 Z[X ] is the
n-th Chebyshev polynomial.

Theorem
Let P be a point not in `C , then we can compute

Qi(Xi) = C`i (Xi)� xP and Ti(Xi) = C`(Xi)�Xi�1

using O(`i) operations.
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Towers from elliptic curves

Problem 1: there is essentially one conic; we would like to
have more group choices, elliptic curves are an option.
Problem 2: `-multiplication on elliptic curves is a degree `2
map; we must consider separable isogenies instead.

E0 : y2 = x 3 + ax + b; a ; b 2 Fq ; ` - (q � 1); ` j #E0(Fq)

E0 E1

E2

E3

E4

�0

�1

�2�3

�4

Under these assumptions, isogenies form a cycle

�i : Ei ! Ei+1:

Lemma En
�= E0 for some n 2 O(

p
q log(q)).
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Towers from elliptic curves

Lemma (Couveignes and Lercier, 2011)
Let P 62 `Ei , and  = �i�1 � �i�2 � � � � � �j ,
then  �1(P) is irreducible of cardinality `i�j .

Vélu’s formulas
�i : Ei �! Ei+1;

(x ; y) 7�!
�

fi (x )
gi (x )

; y
�

fi (x )
gi (x )

�0�
;

The `-adic tower

T1 = f�1(X1)� �g�1(X1);

Ti = f�i(Xi)�Xi�1g�i(Xi):
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Evaluating embeddings

Observation
In all previous cases, from the form of Ti we deduce

Xi�1 = f (Xi)=g(Xi)

for some f and g . Going from multivariate to univariate is

X
ajX

�j
i�1X

�j
i 7!

X
aj

f (Xi)
�j

g(Xi)�j
X �j

i

Definition
Let P 2 Fq [X ;Y ] and n 2 N, with deg(P ;X ) < n . Define

P [f ; g ;n ] = gn�1P
 

f
g
;Y

!
2 Fq [Y ]:
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Lifting: Multivariate ! Univariate

Algorithm 1 Compose

Require: P 2 Fq [X ;Y ], f ; g 2 Fq [Y ], n 2 N
1: if n = 1 then
2: return P
3: else
4: m  dn=2e
5: Let P0;P1 be such that P = P0 + XmP1

6: Q0  Compose(P0; f ; g ;m)
7: Q1  Compose(P1; f ; g ;n �m)
8: Q  Q0gn�m + Q1f m

9: return Q
10: end if

Theorem
Algorithm 1 computes Q = P [f ; g ;n ] using O(M(`n) log(n))
operations in Fq .
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Pushing: Univariate ! Multivariate

Algorithm 2 Decompose

Require: Q ; f ; g ; h 2 Fq [Y ], n 2 N
1: if n = 1 then
2: return Q
3: else
4: m  dn=2e
5: u  1=gn�m mod f m

6: Q0  Qu mod f m

7: Q1  (Q �Q0gn�m) div f m

8: P0  Decompose(Q0; f ; g ; h ;m)
9: P1  Decompose(Q1; f ; g ; h ;n �m)
10: return P0 + XmP1

11: end if

Theorem
Algorithm 2 computes a polynomial P 2 Fq [X ;Y ] such that
Q = P [f ; g ;n ] using O(M(`n) log(n)) operations in Fq .
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Implementation
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GF()
sub<>

Embed()
Chebyshev
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sub<>

Embed()
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Elliptic

Times for building 3-adic towers on top of F2 (left)
and F5 (right), in Magma (first three lines) and using
our code.

Intel Xeon E5620 clocked at 2.4 GHz, using Sage 5.5 and Magma
2.18.12
Source code at https://github.com/defeo/towers.
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Lattices (work in progress)
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Composita of fields

Input: Fpm = Fp[X ]=P(X ) and Fpm = Fp[Y ]=P(Y ), with
(m ;n) = 1.

Output: Fpmn = Fp[Z ]=R(Z ).

Theorem (Bostan & Schost)
Let x ; y be roots of P ;Q .

Both xy and x + y generate Fpmn ;
The minimal polynomial of xy or x + y can be computed in
~O(mn).
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Towards quasi-optimal embeddings

Work in progress (with Doliskani and Schost)
Evaluate the maps Fpn ,! Fpmn ; ~O(mn)
Evaluate the sections; ~O(mn)
Full pushing Fpmn ! Fm

pn . ~O(mn min(m ;n))

Techniques
Bostan & Schost algorithm;
Bivariate trace computations (following Rouiller);
transposed algorithms (following Bostan, Salvy & Schost).
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Summary

Results
`-adic towers very efficient for some `;
Asymptotically good for most small `;
Composita also asymptotically good;
Full performances yet to test.

Open questions
Large prime degree extensions;
Quasi-optimal full push down in composita;
Arbitrary finite field isomorphisms in proven/practical
subquadratic time.
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