

algorithms for $\bar{\mathbb{F}}_p$

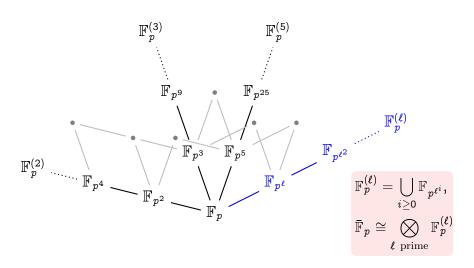
Luca De Feo¹ joint work with Javad Doliskani² and Éric Schost²

¹Université de Versailles – Saint-Quentin-en-Yvelines

²University of Western Ontario

Séminaire BAC, September 20, 2013

What does $\bar{\mathbb{F}}_p$ look like?



In software

Definition (Compatible lattice)

- A collection of finite fields \mathbb{F}_{p^n} for any $n \geq 1$;
- A collection of morphisms $\mathbb{F}_{p^m} \hookrightarrow \mathbb{F}_{p^n}$ whenever m|n.

Fact

Given a lattice, any element of $\overline{\mathbb{F}}_p$ can be represented as an element of a finite field in the lattice.

(Lenstra, De Smit & Lenstra)

 $\Omega(n^3)$

There exist a determinisitic algorithm that constructs a compatible lattice in time polynomial in $\log p$ and n, where n is the degree of the largest computed extension of \mathbb{F}_p .

Our interest

- Efficient construction of lattices,
- Efficient field operations.

Goals:

- Constructing fields:
 - ▶ Build irreducible polynomials in quasi-linear time.
- Describing embeddings:
 - Quasi-linear time and memory in the degree of the extension.
- Evaluating embeddings:
 - ▶ Replace linear algebra by polynomial arithmetic.

Application examples:

- \bullet General: finite field arithmetic, unramified extensions of $\mathbb{Q}_p.$
- Computing isogenies between elliptic curves, DF, 2011.
- Point-counting in genus 2, Gaudry and Schost, 2012.

Known constructions

Construct fields arbitrarily + compute embeddings

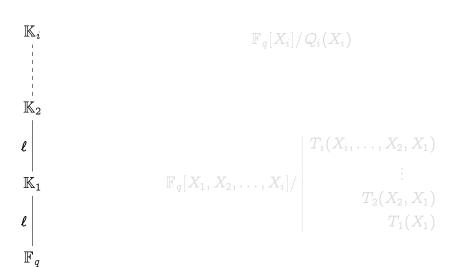
- Describe the embeddings
 - ▶ Factor minimal polynomials,
 - Allombert's isomorphism algorithm (in Pari?).
 - Rains' isomorphism algorithm (unpublished, in Magma),
- Evaluate the embeddings
 - Linear algebra,
 - ▶ Map generators (polynomial arithmetic).

Construct fields defined by special polynomials

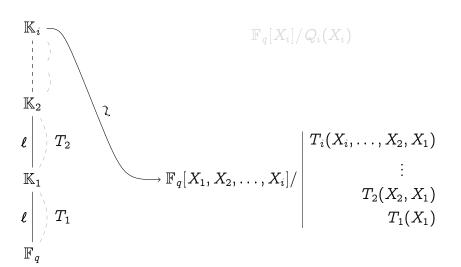
- (pseudo)-Conway polynomials,
- Cyclotomy theory (De Smit & Lenstra and generalizations),
- Fancy (and still limited) constructions (this talk).

Towers

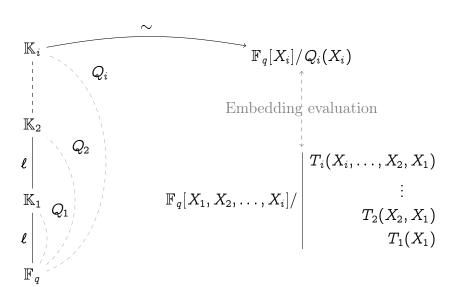
Univariate vs. Multivariate



Univariate vs. Multivariate



Univariate vs. Multivariate



Summary of Main Results

Previous work

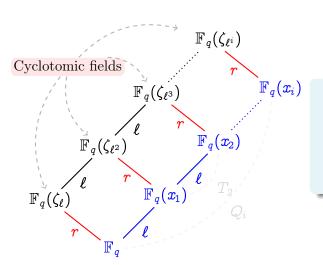
- \bullet Artin-Schreier (Cantor, Couveignes, DF & Schost): q fixed, $\ell=p$ small;
- Dyadic towers (Doliskani & Schost): q fixed, $\ell = 2$;
- $\tilde{O}(\ell^{i+c})$ operations in \mathbb{F}_q , $c \in \{1, 2\}$.

This work: objective

- q fixed, ℓ small: $\tilde{O}(\ell^i)$ operations in \mathbb{F}_q ;
- Limit additional factors in ℓ and q as much as possible.

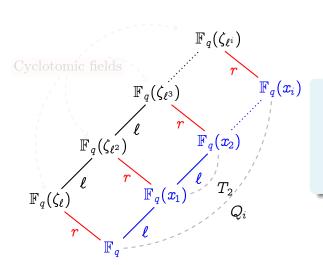
Condition	Initialization	$\mathbf{Q_i}, \mathbf{T_i}$	Embedding eval.
$q=1 mod \ell$	O(1)	$O(\ell^i)$	$O(\ell^i)$
$q=-1 \bmod \ell$	O(1)	$\mathcal{O}(\ell^i)$	$\mathcal{O}(\mathrm{M}(\ell^i)\log(\ell^i))$
_	$O(\ell^2)$	$O(\mathrm{M}(\ell^{i+1})\mathrm{M}(\ell)\log(\ell^i)^2)$	$O(\mathrm{M}(\ell^{i+1})\mathrm{M}(\ell)\log(\ell^i))$
$4\ell \leq q^{1/4}$	$\tilde{\mathcal{O}}(\ell^3)$ (bit)	$O(\mathrm{M}(\ell^i)\log(\ell^i))$	$O(\mathrm{M}(\ell^i)\log(\ell^i))$
$4\ell \leq q^{1/4}$	$ ilde{\mathcal{O}}(\mathrm{M}(\ell))$	$O(\mathrm{M}(\ell^i)\log(\ell^i))$	$O(\mathrm{M}(\ell^i)\log(\ell^i))$

(inspired by Shoup, Allombert, De Smit and Lenstra)



- $r \mid (\ell 1)$;
- $ullet x_i = {
 m Tr}_{\mathbb{K}_i/\mathbb{F}_{q\ell^i}}(\zeta_{\ell^i});$
- Both T_i and Q_i can be computed by resultants.

(inspired by Shoup, Allombert, De Smit and Lenstra)



- $r | (\ell 1);$
- $ullet \ x_i = {
 m Tr}_{\mathbb{K}_i/\mathbb{F}_{q^{oldsymbol{\ell}^i}}}(\zeta_{oldsymbol{\ell}^i});$
- Both T_i and Q_i can be computed by resultants.

Generic algorithm

- Perform all computations in the cyclotomic tower;
- \bullet Construction and embedding evaluation: penalty only $\tilde{O}(\ell^2).$

Trivial case: $\ell \mid (q-1) \Leftrightarrow r=1$

Kummer extensions

$$Q_i = X_i^{\ell^i} - y_0$$
 and $T_i = X_i^{\ell} - X_{i-1}$

Embeddings are trivial.

Generic algorithm

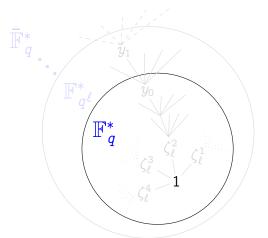
- Perform all computations in the cyclotomic tower;
- \bullet Construction and embedding evaluation: penalty only $\tilde{O}(\ell^2).$

Special case: $\ell \mid (q+1) \Leftrightarrow r=2$

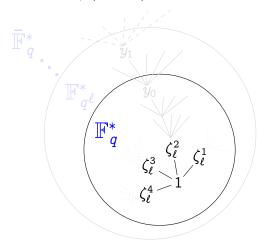
By direct resultant computation

$$Q_i(X_i) = Y^{\ell^i} + Y^{-\ell^i} - x_0 \mod Y^2 - X_i Y + 1$$

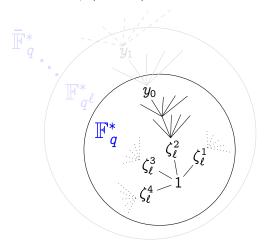
- Similar form for T_i .
- Q_i can be computed in $O(M(\ell^i))$; a better algorithm later.
- Embeddings: later.



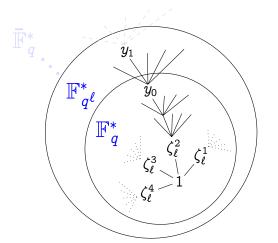
- $\phi|_{\mathbb{F}_q^*}$ not surjective;
- $\phi: \mathbb{G}_m \to \mathbb{G}_m$ surjective;
- Starting from y_0 , every $\phi^{-1}y_i$ is an irreducible set of cardinality ℓ .



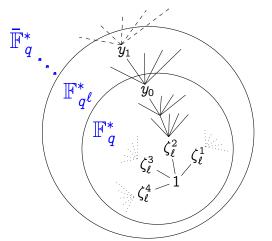
- $\phi|_{\mathbb{F}_q^*}$ not surjective;
- $\phi: \mathbb{G}_m \to \mathbb{G}_m$ surjective;
- Starting from y_0 , every $\phi^{-1}y_i$ is an irreducible set of cardinality ℓ .



- $\phi|_{\mathbb{F}_q^*}$ not surjective;
- $\phi: \mathbb{G}_m \to \mathbb{G}_m$ surjective;
- Starting from y_0 , every $\phi^{-1}y_i$ is an irreducible set of cardinality ℓ .



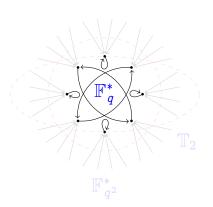
- $\phi|_{\mathbb{F}_q^*}$ not surjective;
- $\phi : \mathbb{G}_m \to \mathbb{G}_m$ surjective;
- Starting from y_0 , every $\phi^{-1}y_i$ is an irreducible set of cardinality ℓ .



- $\phi|_{\mathbb{F}_a^*}$ not surjective;
- $\phi : \mathbb{G}_m \to \mathbb{G}_m$ surjective;
- Starting from y_0 , every $\phi^{-1}y_i$ is an irreducible set of cardinality ℓ .

Chebyshev case: $\ell \mid (q+1)$

Consider the map $\phi: x \mapsto x^{\ell}$

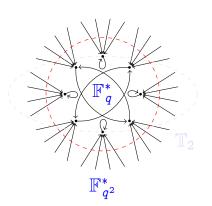


- $\phi|_{\mathbb{F}_q^*}$ bijective;
- $\phi|_{\mathbb{F}_{\sigma^2}^*}$ non surjective;
- $\mathbb{T}_2 \subset \mathbb{F}_{q^2}^*$ algebraic torus of cardinality q+1.

$$\mathbb{T}_n(k)\cong \{lpha\in L^*\mid \mathrm{N}_{L/F}(lpha)=1 ext{ for all } k\subset F\subsetneq L\}.$$

Chebyshev case: $\ell \mid (q+1)$

Consider the map $\phi: x \mapsto x^{\ell}$

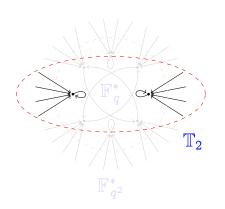


- $\phi|_{\mathbb{F}_q^*}$ bijective;
- $\phi|_{\mathbb{F}_{a^2}^*}$ non surjective;
- $\mathbb{T}_2 \subset \mathbb{F}_{q^2}^*$ algebraic torus of cardinality q+1.

$$\mathbb{T}_n(k)\cong \{lpha\in L^*\mid \mathrm{N}_{L/F}(lpha)=1 ext{ for all } k\subset F\subsetneq L\}.$$

Chebyshev case: $\ell \mid (q+1)$

Consider the map $\phi: x \mapsto x^{\ell}$

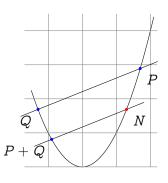


- $\phi|_{\mathbb{F}_a^*}$ bijective;
- $\phi|_{\mathbb{F}_{q^2}^*}$ non surjective;
- $\mathbb{T}_2 \subset \mathbb{F}_{q^2}^*$ algebraic torus of cardinality q+1.

$$\mathbb{T}_n(k)\cong \{lpha\in L^*\mid \operatorname{N}_{L/F}(lpha)=1 ext{ for all } k\subset F\subsetneq L\}.$$

Towers from algebraic tori (Pell conics)

- By Weil descent, \mathbb{T}_2 is isomorphic to a Pell conic;
- Multiplication in $\bar{\mathbb{F}}_q$ induces a group law on the points.



Pell conic:

$$C: x^2 - \Delta y^2 = 4$$

Addition: For $P = (x_1, y_1)$ and $Q = (x_2, y_2)$,

$$P \oplus Q = \left(\frac{x_1x_2 + \Delta y_1y_2}{2}, \frac{x_1y_2 + x_2y_1}{2}\right)$$

Towers from algebraic tori

- $\mathbb{T}_2 \to \text{Pell conic } C$,
- multiplication in $\mathbb{F}_{q^2} \to \text{addition in } C$,
- ℓ -th power \rightarrow scalar multiplication $[\ell]$.

Lemma

The abscissa of [n]P is given by $C_n(x_1)$, where $C_n \in \mathbb{Z}[X]$ is the n-th Chebyshev polynomial.

Theorem

Let P be a point not in ℓC , then we can compute

$$Q_i(X_i) = C_{\ell^i}(X_i) - x_P$$
 and $T_i(X_i) = C_{\ell}(X_i) - X_{i-1}$

using $O(\ell^i)$ operations.

Towers from elliptic curves

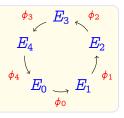
- Problem 1: there is essentially one conic; we would like to have more group choices, elliptic curves are an option.
- Problem 2: ℓ -multiplication on elliptic curves is a degree ℓ^2 map; we must consider separable isogenies instead.

$$E_0 \ : \ y^2=x^3+ax+b, \quad a,b\in \mathbb{F}_q, \quad \ell
mid (q-1), \quad \ell \mid \#E_0(\mathbb{F}_q)$$

Under these assumptions, isogenies form a cycle

$$\phi_i: E_i \to E_{i+1}$$
.

Lemma $E_n \cong E_0$ for some $n \in O(\sqrt{q} \log(q))$.



Towers from elliptic curves

Lemma (Couveignes and Lercier, 2011)

Let $P \notin \ell E_i$, and $\psi = \phi_{i-1} \circ \phi_{i-2} \circ \cdots \circ \phi_j$, then $\psi^{-1}(P)$ is irreducible of cardinality ℓ^{i-j} .

Vélu's formulas

$$egin{array}{lll} \phi_i: & E_i & \longrightarrow & E_{i+1}, \ (x,y) & \longmapsto & \left(rac{f_i(x)}{g_i(x)}, y\left(rac{f_i(x)}{g_i(x)}
ight)'
ight), \end{array}$$

The *l*-adic tower

$$T_1 = f_{-1}(X_1) - \eta g_{-1}(X_1),$$

 $T_i = f_{-i}(X_i) - X_{i-1}g_{-i}(X_i).$

Evaluating embeddings

Observation

In all previous cases, from the form of T_i we deduce

$$X_{i-1} = f(X_i)/g(X_i)$$

for some f and g. Going from multivariate to univariate is

$$\sum a_j X_{i-1}^{lpha_j} X_i^{eta_j} \mapsto \sum a_j rac{f(X_i)^{lpha_j}}{g(X_i)^{lpha_j}} X_i^{eta_j}$$

Definition

Let $P \in \mathbb{F}_q[X, Y]$ and $n \in \mathbb{N}$, with $\deg(P, X) < n$. Define

$$P[f,g,n]=g^{n-1}P\left(rac{f}{g},\,Y
ight)\in\mathbb{F}_q[\,Y].$$

Lifting: Multivariate \rightarrow Univariate

Algorithm 1 Compose

9: return Q 10: end if

```
Require: P \in \mathbb{F}_q[X, Y], f, g \in \mathbb{F}_q[Y], n \in \mathbb{N}
1: if n = 1 then
2: return P
3: else
4: m \leftarrow \lceil n/2 \rceil
5: Let P_0, P_1 be such that P = P_0 + X^m P_1
6: Q_0 \leftarrow \operatorname{Compose}(P_0, f, g, m)
7: Q_1 \leftarrow \operatorname{Compose}(P_1, f, g, n - m)
8: Q \leftarrow Q_0 g^{n-m} + Q_1 f^m
```

Theorem

Algorithm 1 computes Q = P[f, g, n] using $O(M(\ell n) \log(n))$ operations in \mathbb{F}_q .

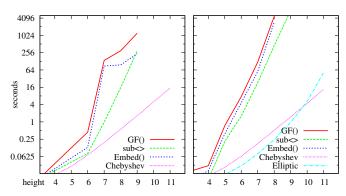
Pushing: Univariate \rightarrow Multivariate


```
Algorithm 2 Decompose
Require: Q, f, g, h \in \mathbb{F}_q[Y], n \in \mathbb{N}
 1. if n = 1 then
 2: return Q
 3. else
 4: m \leftarrow \lceil n/2 \rceil
 5: u \leftarrow 1/q^{n-m} \mod f^m
 6: Q_0 \leftarrow Qu \mod f^m
 7: Q_1 \leftarrow (Q - Q_0 q^{n-m}) \operatorname{div} f^m
 8: P_0 \leftarrow \text{Decompose}(Q_0, f, g, h, m)
 9: P_1 \leftarrow \text{Decompose}(Q_1, f, q, h, n - m)
10: return P_0 + X^m P_1
11: end if
```

Theorem

Algorithm 2 computes a polynomial $P \in \mathbb{F}_q[X, Y]$ such that Q = P[f, g, n] using $O(M(\ell n) \log(n))$ operations in \mathbb{F}_q .

Implementation



Times for building 3-adic towers on top of \mathbb{F}_2 (left) and \mathbb{F}_5 (right), in Magma (first three lines) and using our code.

- Intel Xeon E5620 clocked at 2.4 GHz, using Sage 5.5 and Magma 2.18.12
- Source code at https://github.com/defeo/towers.

Lattices (work in progress)

Composita of fields

Input:
$$\mathbb{F}_{p^m} = \mathbb{F}_p[X]/P(X)$$
 and $\mathbb{F}_{p^m} = \mathbb{F}_p[Y]/P(Y)$, with $(m,n)=1$.

Output: $\mathbb{F}_{p^{mn}} = \mathbb{F}_p[Z]/R(Z)$.

Theorem (Bostan & Schost)

Let x, y be roots of P, Q.

- Both xy and x + y generate $\mathbb{F}_{p^{mn}}$;
- The minimal polynomial of xy or x + y can be computed in $\tilde{O}(mn)$.

Towards quasi-optimal embeddings

Work in progress (with Doliskani and Schost)

• Evaluate the maps $\mathbb{F}_{p^n} \hookrightarrow \mathbb{F}_{p^{mn}}$;

O(mn)

• Evaluate the sections;

 $\tilde{O}(mn)$

• Full pushing $\mathbb{F}_{p^{mn}} \to \mathbb{F}_{p^n}^m$.

 $\tilde{\mathcal{O}}(mn\min(m,n))$

Techniques

- Bostan & Schost algorithm;
- Bivariate trace computations (following Rouiller);
- transposed algorithms (following Bostan, Salvy & Schost).

Summary

Results

- ℓ -adic towers very efficient for some ℓ ;
- Asymptotically good for most small ℓ ;
- Composita also asymptotically good;
- Full performances yet to test.

Open questions

- Large prime degree extensions;
- Quasi-optimal full push down in composita;
- Arbitrary finite field isomorphisms in proven/practical subquadratic time.