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Schnorr Signatures

For an example: consider the Schnorr signature scheme
based on our finite cyclic group G = 〈P〉 of order N .

We will need to fix a cryptographic hash function

H : {0, 1}∗ −→ [0..N − 1]

(arbitrary length strings of bits −→ values in Z/NZ)
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Schnorr: Key Generation algorithm

System parameters G = 〈P〉 of order N, hash H : {0, 1}∗ → Z/NZ
Output A public/private-key pair (Q, x) ∈ G × Z/NZ;

Q is the public key, while x is the private key.

1 Set x := random(Z/NZ);

2 Set Q := [x ]P;

3 Return (Q, x).
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Schnorr: Sign algorithm

System parameters G = 〈P〉 of order N, hash H : {0, 1}∗ → Z/NZ
Input A message m ∈ {0, 1}∗ and

a private key x ∈ Z/NZ.

Output A Schnorr signature (s, e) ∈ (Z/NZ)2.

1 Set k := random(Z/NZ);

2 Set R := [k]P;

3 Set e := H(m||R); (Here || is concatenation of bitstrings)

4 Let s := k − xe (mod N);

5 Return (s, e).
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Schnorr: Verify algorithm

System parameters G = 〈P〉 of order N, hash H : {0, 1}∗ → Z/NZ
Input A signature (s, e) ∈ (Z/NZ)2,

a message m ∈ {0, 1}∗, and
a public key Q ∈ G.

Output True if (s, e) is a valid Schnorr signature on the message m
for the user with public key Q, otherwise False.

1 Let R ′ := [s]P ⊕ [e]Q;

2 Let e ′ := H(m||R ′);

3 If e ′ = e, then
Return True;

else
Return False.
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Scalar multiplication

Scalar multiplication is fundamental in each part of the signature scheme.

We need to compute [m]P for arbitrary m ∈ [0,N − 1] and P in G
as fast as possible.

Generally, m ∼ N (ie, log m = log N): really big!

Measure algorithmic performance in terms of log2 N
(since this governs the input and output size)

Computing [m]P by iterating the group law m times over?
Exponentially slow!
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Scalar multiplication: binary exponentiation

We can always compute [m]P in O(log N) G-operations.

Input m in [0..N − 1], P in G
Output [m]P

1 Let n := dlog2 Ne;
2 Compute the binary representation m =

∑n−1
i=0 mi2

i

(with mi ∈ {0, 1}); Note: normally this is for free

3 Set R := 0G ;

4 For i in n − 1 down to 0,

4a Set R := [2]R;
4b Set R := R ⊕ [mi ]P;

Note: [mi ]P = 0 or P

5 Return R.

...log2 m doublings, ≤ log2 m addings; worst/general case log m = log N
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Scalar multiplication: multiexponentation

Here’s something cute:
We can compute [a]P ⊕ [b]Q using only log2 max(|a|, |b|) doublings

Input a and b in [0..N − 1], P and Q in G
Output [a]P ⊕ [b]Q

1 Let n = dlog2 max(a, b)e;
2 Compute binary representations a =

∑n−1
i=0 ai2

i

and b =
∑n−1

i=0 bi2
i (with ai , bi ∈ {0, 1}) Normally: for free

3 Set R := 0G ;

4 For i = n − 1 down to 0,

4a Set R := [2]R;
4b Set R := R ⊕ ([ai ]P ⊕ [bi ]Q);

Note: [ai ]P ⊕ [bi ]Q) = 0,P,Q, or P ⊕ Q

5 Return R.
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Abstract groups: the gold standard

...But in the “real” world, we don’t have abstract groups:
everything has some concrete representation.

The ideal G should approximate an abstract/black-box G:

Elements should take log2 N bits to store
...so we don’t waste memory or bandwidth

Group operations should require a small-poly(log2 N) bit operations
...so that the cryptosystem will work as fast as possible

Discrete Logarithm Problems should require O(
√

N) G-operations
...to be as secure as possible

Smith (INRIA/LIX) Scalar decomposition on elliptic curves May 2013 9 / 23



From the abstract to the concrete

State of the art: G ⊆ E(Fq), q = p, p2, or 2prime

Elements? Only need to store the x-coordinate plus the “sign” of y .
=⇒ logq +1 bits

Almost perfect if G is most of E(Fq)

ie, #E(Fq) = Nh, with h tiny (eg. h = 1);
want n-bit prime-order G? Use an n-bit q
lots of choices of E/Fq (compared to unique F×

q )

Group operations? low-degree polynomials over Fq

OK

DLP?
? ...So far, generic curves: O(

√
N) =⇒ ( 1

2 log2 q)-bit security
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Geometry: Use It or Lose It

So: Elliptic curves are a source of concrete groups
that perform essentially as well as black-box groups...

BUT
..there’s nothing black-box about a smooth plane cubic

Problems:

Destructive Exploit the geometry to solve DLPs faster (reduce security)

Constructive Exploit the geometry to make cryptosystems more efficient
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Let’s be constructive

When we study an algebraic object, we always look at its endomorphisms
(homomorphisms back into itself).

We work with G ∼= Z/NZ, embedded in E .

End(G) = Z/NZ
End(E) ⊇ Z[π], where π : (x , y) 7−→ (xq, yq) (Frobenius)

If ψ ∈ EndFq(E) restricts to an endomorphism of G (that is, ψ(G) ⊆ G)
—and this happens pretty much all the time—then

ψ(P) = [λψ]P for all P ∈ G

We call λψ the eigenvalue of ψ on G. Note: −N/2 < λψ < N/2.
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Scalar multiplication with an endomorphism

Consider scalar multiplication: we want to compute [m]P.
Abstractly, we can do this with log2 m doubles.

Suppose ψ ∈ End(E) has eigenvalue λψ in Z/NZ.
If

m ≡ a + bλψ (mod N),

then
[m]P = [a]P ⊕ [b]ψ(P)

—and we can compute the RHS using multiexponentation.
Hence

if ψ can be evaluated fast (time/space < few doubles), and

if we can find a and b significantly shorter than m,

then we can compute [m]P significantly faster.
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Scalar multiplication with an endomorphism

Lemma

If |λψ| > N1/2, then we can find a and b such that

a + bλψ ≡ m (mod N)

with
a and b in O(

√
N).

(Even better: can compute a and b easily)

Great! Now all we need is a source of good E equipped with fast ψ...
...and this turns out to be highly nontrivial.

Note: integer multiplications and Frobenius do not make good ψ.
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GLV Curves (Gallant–Lambert–Vanstone, CRYPTO 2001)

Start with an explicit CM curve over Q and reduce mod p.

Example (CM by
√
−1)

Let p ≡ 1 (mod 4); let i be a square root of −1 in Fp. Then the curves

Ea : y 2 = x3 + ax

have an explicit (and extremely efficient) endomorphism

ψ : (x , y) 7−→ (−x , iy).

Good scalar decompositions: this λψ =
√
−1. Weak point: curve rarity.
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Limitations of GLV

The curves Ea/Fp : y 2 = x3 + ax look perfect...
...but we are not always free to choose our own prime p.

Example

The 256-bit prime p = 2255 − 19 offers very fast field arithmetic.
The Fp-isomorphism classes of Ea/Fp are represented by a = 1, 2, 4, 8.

Largest prime factor of #Ea(Fp) =


199 bits if a = 1

239 bits if a = 2

175 bits if a = 4

173 bits if a = 8

So we pay for fast arithmetic with at least 17 (/256) bits of group order,
which is about 9 (/128) bits of security.
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Other GLV curves

We can try other explicit CM curves... But there are hardly any of them!

ψ fast (generally) implies deg φ very small

deg φ small, φ /∈ Z =⇒ Z[φ] has small discriminant ∆

curves with CM by discriminant ∆ have j-invariant classified by Hilbert polynomials H∆

H∆ has very small degree, typically 1 for tiny ∆

=⇒ only one j-invariant per ∆

Only 2, 4, or 6 twists (curves) per j-invariant

=⇒ a handful of suitable curves, none of which might have (almost)-prime reduction mod p

Only 18 GLV curves with endomorphisms faster than doubling.
No guarantee any of them have good cryptographic group orders mod p.
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GLS Curves (Galbraith–Lin–Scott, EUROCRYPT 2009)

Start with any curve over Fp, extend to Fp2,
and use p-th powering on the quadratic twist.

Example

Let p ≡ 5 (mod 8), take A, B, in Fp, take µ in Fp2 with µ nonsquare:

E/Fp2 : y 2 = x3 + µ2Ax + µ3B

has an efficient endomorphism

ψ : (x , y) 7−→ (−xp, iyp) where i2 = −1.

p-th powering in Fp2 = Fp(
√

D) almost free: (a0 + a1

√
D)p = a0 − aq

√
D

Good scalar decompositions: λψ =
√
−1. Weak point: twist insecurity.
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New endomorphisms

Example

Consider a general elliptic curve E : y 2 = x3 + Ax + B over Fp2 .
No obvious endomorphisms, apart from

[m] for m ∈ Z (eigenvalue m, too slow for big m !)

Frobenius π : (x , y)→ (xp2
, yp2

) (fixes Fp2-points: eigenvalue 1), and

Linear combinations: too slow!

We would like to use the sub-Frobenius

π0 : (x , y) 7−→ (xp, yp),

but it’s not an endomorphism: it is an isogeny mapping us onto the
curve

(p)E : y 2 = x3 + Apx + Bp

—which, over Fp2 , coincides with the Galois conjugate of E .
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New endomorphisms

We’ve mapped onto the wrong curve! We need to get back to E .

We have another p-powering isogeny (p)π0 : (p)E → E ,
but the composition (p)π0π0 is π (Frobenius), no use!

Idea: What if E was the reduction mod p of a quadratic Q-curve?

That is, a curve Ẽ/Q(
√

D) such that there is an isogeny φ̃ : Ẽ → σẼ?

Then φ̃ would reduce to an isogeny φ : E → (p)E , and
the composition (p)π0φ would be a new endomorphism.
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New endomorphisms

Example

Consider the universal quadratic Q-curve of degree 2 (Hasegawa):

Let D be any squarefree discriminant, t ∈ Q a free parameter, and

Ẽ/Q(
√

D) : y 2 = (x − 4)(x2 + 4x + 18
√

Dt − 14)

σẼ/Q(
√

D) : y 2 = (x − 4)(x2 + 4x − 18
√

Dt − 14)

There exists a 2-isogeny φ̃ : Ẽ → σẼ , defined by

φ̃ : (x , y) 7−→
(

f (x),
y√
−2

f ′(x)

)
where f (x) =

x2 − 4x + 18
√

Dt + 18

−2(x − 4)
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New endomorphisms (S., 2013)

Example

For any p > 3 and any t ∈ Fp, the curve

Et/Fp2 : y 2 = (x − 4)(x2 + 4x + 18
√

Dt − 14)

has a fast endomorphism ψ defined by

ψ : (x , y) 7−→
(
−f (xp)

2
,

ypf ′(xp)

2
√
−2

)
where f (xp) = xp +

18(1 + t
√

D)

(xp − 4)

For example: p = 2127 − 1, D = −1, s = 1229 . . . 107;
Get #E2,s(Fp(

√
D)) = 2 · (255-bit prime) twist secure!
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So, what was the point again?

Use the geometry of the curve for faster ECC.

The critical operation is scalar multiplication.

With fast endomorphisms on elliptic curves:
scalar multiplication becomes half-length

multiexponentiation.
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