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Boolean functions

A Boolean function is a function f : F2n → F2 .

Polynomial form

f has a unique trace expansion of the form:

f(x) =
∑
j∈Γn

Tr
o(j)
1

(
ajx

j
)

+ ε(1 + x2n−1), aj ∈ F2o(j) ,

where Γn is the set of integers obtained by choosing one element in each
cyclotomic class modulo 2n − 1 ,o(j) the size of the coset and ε = wt(f)
(mod 2).

Bentness

A Boolean function f is said to be bent if it has maximum non-linearity
2n−1 − 2n/2−1, i.e. is as far as possible of all a�ne functions.
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Walsh-Hadamard transform

Walsh-Hadamard transform

For ω ∈ F2n , the Walsh-Hadamard transform of f at ω is

χ̂f (ω) =
∑
x∈F2n

(−1)f(x)+Trn1 (ωx) .

(Hyper)-bentness can be characterized using the Walsh-Hadamard
transform.

Bentness: A Boolean function f : F2n → F2 is said to be bent if
χ̂f (ω) = ±2

n
2 , for all ω ∈ F2n .

Hyper-Bentness: A Boolean function f : F2n → F2 is said to be
hyper-bent if the function x 7→ f(xi) is bent, for every integer i
co-prime with 2n − 1.
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Computing the Walsh-Hadamard transform

The Walsh-Hadamard transform can be computed quite easily and
e�ciently: algorithm in O(2mm2) bit operations and O(2mm) memory,
cache e�cient, ridiculously small constant [Arn10].

Already implemented in Sage [S+11] (using Cython [BCS10]). However
there are some drawbacks with the current implementation:

1 returns the opposite of the transform;

2 limited to 32 bits;

3 returns a Python array.

Some improvements provided in Trac ticket #11450.
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Binary Kloosterman Sums

The binary Kloosterman sums on F2m are

Km(a) =
∑
x∈F2m

(−1)Trm1 (ax+ 1
x), a ∈ F2m .

Remark:
The function a 7→ Km(a) is the Walsh-Hadamard transform of the
function Trm1 (1/x).
Therefore, all values of Kloosterman sums can be computed at once using
a fast Walsh-Hadamard transform.
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Characterization using the Value 0

(Hyper)-bentness can be characterized using such sums. It is known since
1974 that the zeros of Km(a) give rise to bent functions.

Proposition (Monomial functions[Dil74, LW90, Lea06, CG08])

Let f : F2n → F2 be de�ned as

f(x) = Trn1

(
axr(2

m−1)
)
, gcd(r, 2m + 1) = 1 .

Then f is hyper-bent i� Km(a) = 0.

Several other families admit a similar characterization [Mesar].
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Characterization using the Value 4

It is only in 2009 that Mesnager has shown that the value 4 leads to similar
contructions [Mes11].

Proposition ([Mes11])

Let f : F2n → F2 be de�ned as

f(x) = Trn1

(
axr(2

m−1)
)

+ Tr2
1

(
bx

2n−1
3

)
, gcd(r, 2m + 1) = 1 .

If m is odd, then f is hyperbent i� Km(a) = 4. If m is even, this is a
necessary condition.

More families are described in the same paper [Mes11].
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Classical divisibility results

Divisibility of Kloosterman sums has been studied for a long time.

Proposition ([LW90])

Let m ≥ 3 be a positive integer. The set {Km(a), a ∈ F2m} is the set of
all the integer multiples of 4 in the range [−2(m+2)/2 + 1, 2(m+2)/2 + 1].

Most classical results arise from the study of the link between exponential
sums and coset weight distribution [HZ99, CHZ09].

Proposition ([HZ99])

Let m ≥ 3 be any positive integer and a ∈ F2m . Then Km(a) ≡ 0
(mod 8) if and only if Trm1 (a) = 0.

These conditions can be used to �lter out the a's to test while performing
a random search.
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Further divisibility properties mod 3.

Proposition ([HZ99])

Let m ≥ 3 be any positive integer and a ∈ F∗2m . Suppose that there exists
t ∈ F∗2m such that a = b4 + b3.

If m is odd, then Km(a) ≡ 1 (mod 3).

If m is even, then Km(a) ≡ 0 (mod 3) if Trm1 (b) = 0 and
Km(a) ≡ −1 (mod 3) if Trm1 (b) = 1.

Proposition ([CHZ09])

Let a ∈ F∗2m . Then we have:

If m is odd, then Km(a) ≡ 1 (mod 3) if and only if Trm1
(
a1/3

)
= 0.

This is equivalent to a = b
(1+b)4

for some b ∈ F∗2m .

If m is even, then Km(a) ≡ 1 (mod 3) if and only if a = b3 for some
b such that Trm2 (b) 6= 0.
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Equations

Here are some speci�c results to elliptic curves in even characteristic.

E is ordinary i� j(E) 6= 0.

It can then be described as

E : y2 + xy = x3 + bx2 + a ,

with a 6= 0 and j(E) = 1/a.

Moreover its �rst division polynomials are [Kob90, BSS00]

f1(x) = 1, f2(x) = x,

f3(x) = x4 + x3 + a, f4(x) = x6 + ax2 .
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Quadratic twist

If E is ordinary, then the quadratic twist Ẽ is an elliptic curve with the
same j-invariant as E, but non-isomorphic to it over Fq (it becomes so
over Fq2).
It can be given by the Weierstrass equation

Ẽ : y2 + xy = x3 + b̃x2 + a ,

where b̃ is any element of Fq such that Trm1

(
b̃
)

= 1− Trm1 (b) [Eng99].

The number of points of a curve and its quadratic twist are closely
related [Eng99, BSS00]:

#E + #Ẽ = 2q + 2 .
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Curves with a given number of points

The cardinality of a curve is given by the trace of its Frobenius:

#E = q + 1− t .

If E is ordinary, then 2 - t and the endomorphism ring of E is an order in

K = Q[α] containing the order Z[α] of discriminant ∆ where α = t+
√

∆
2

and ∆ = t2 − 4q.
This implies that the number of such curves is given by the Kronecker class
number [Sch87, Cox89]

H(∆) =
∑

Z[α]⊂O⊂K

h(O) .

It can be computed using more classical quantities as

H(∆) = h(OK)
∑
d|f

d

[O∗K : O]

∏
p|d

(
1−

(
∆K

p

)
1

p

)
.
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Elliptic curves and Kloosterman sums

The �rst result above is in fact proved using elliptic curves!

Theorem ([LW87, KL89])

Let m ≥ 3 be any positive integer, a ∈ F∗2m and Em(a) the elliptic curve

de�ned over F2m by the equation

Em(a) : y2 + xy = x3 + a .

Then

#Em(a) = 2m +Km(a) .

The theory of elliptic curve can be used much further. For example, the
fact that the Kloosterman sums are divisible by 4 is nothing but the fact
that every such elliptic curves has a 4-torsion point.
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Re�ning HZ Result

Proposition

Let a ∈ F∗2m .
If m is odd, then Km(a) ≡ 1 (mod 3) if and only if there exists
t ∈ F2m such that a = t4 + t3.

If m is even, then:

Km(a) ≡ 0 (mod 3) if and only if there exists t ∈ F2m such that

a = t4 + t3 and Trm1 (t) = 0;
Km(a) ≡ −1 (mod 3) if and only if there exists t ∈ F2m such that

a = t4 + t3 and Trm1 (t) = 1.

Idea of the proof:

1 One way is given by [HZ99].

2 For the other way, look at the 3-division polynomial of E or Ẽ.
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Basic search algorithm

The above discussion already gives an e�cient method to �nd speci�c
values of Kloosterman sums.

1 Pick a random a ∈ F2m .

2 Transform it to have a given shape.

3 Check for additional divisibility properties.

4 Compute the cardinality of Em(a).

The computation of the cardinality is indeed quadratic in
m [Har02, Ver03]:

O(m2 log2m log logm) .
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Finding zeros

The condition of the Lachaud-Wolfmann theorem is

#Em(a) = 2m .

Then, as a group
Em(a) ' Z/2mZ ,

and half its points have exact order 2m.

From these facts, Lison¥k [Lis08] deduced that to check that Em(a) indeed
has a such structure it is enough to take a random point and check it
has order exactly 2m. If a such point is found, then the Hasse-Weil
theorem ensures that Em(a) is indeed of cardinality 2m. This gives an
e�cient probabilistic algorithm to �nd zeros of Kloosterman sums and
he could �nd zeros of Kloosterman sums for m up to 64.
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Sylow group

Ahmadi and Granger subsequently built an e�cient deterministic algorithm
from the above observations [AG11].
Rather than computing the number of points of the randomly chosen
curves, it is indeed enough to compute the size of the 2-Sylow subgroup of
Em(a). This can be e�ciently done by point halving.

The average bit complexity for one curve is

O(m logm log logm)

whereas it is
O(m2 log2m log logm)

for point counting.
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Extending to the value 4

Looking for the value 4, the cardinality of the curve has a way less special
form:

#Em(a) = 2m + 4 = 4(2m−2 + 1) ,

and the cardinality of the twisted curve is not better

#Ẽm(a) = 2m − 2 = 2(2m−1 − 1) .

We can however deduce from these equalities some �ltering properties.

Km(a) ≡ 4 (mod 8), so that Trm1 (a) = 1;

Km(a) ≡ 1 (mod 3), so that:

if m is odd, then a can be written as t4 + t3;
if m is even, then a can be written as t3 with Trm2 (t) 6= 0.
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Algorithm for m odd

Input: A positive odd integer m ≥ 3
Output: An element a ∈ F2m such that Km(a) = 4

1 a←R F2m

2 a← a3(a+ 1)
3 if Trm1 (a) = 0 then
4 Go to step 1

5 P ←R Em(a)
6 if [2m + 4]P 6= 0 then
7 Go to step 1

8 if #Em(a) 6= 2m + 4 then
9 Go to step 1

10 return a
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Implementation for m odd

Some reasonably e�cient point counting on F2n is needed.

Easy solution: use Magma.

Less easy solution: use Yeoh's GP script [Yeo].

Harder solution: use Sage with Trac ticket #11448 or #11548.

Hardest solution: implement it in a C library and interface it from
Sage.

As a result of our experiments, we found that the following value of a for
m = 55 gives a value 4 of binary Kloosterman sum.
The �nite �eld F255 is represented as F2 [x]/(x55 + x11 + x10 + x9 + x7 + x4 + 1); a is then
given as

a = x53 + x52 + x51 + x50 + x47 + x43 + x41 + x38 + x37 + x35

+ x33 + x32 + x30 + x29 + x28 + x27 + x26 + x25 + x24

+ x22 + x20 + x19 + x17 + x16 + x15 + x13 + x12 + x5 .

Some caching management problems in Sage are somehow limiting. See
Trac tickets #715 and #11521.
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m Even

In the case where m is even, the condition given by Mesnager has only
been shown to be necessary. It is of interest to check computationally
whether counterexamples can be found for small values of m.

The problem of computing all elements giving a speci�c value, rather than
looking for one, must be handled di�erenly. A fast Walsh-Hadamard
transform should be used.

Moreover, to test all functions in the family de�ned by Mesnager:

fa,b(x) = Trn1
(
ax2m−1

)
+ Tr2

1

(
bx

2n−1
3

)
,

it is enough to set b = 1 and test one a in each cyclotomic class.
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Algorithm for m even

The test algorithm is as follows:

1 Compute {| Km(a) | a ∈ F2m} with a fast Walsh-Hadamard transform
of Trm1/x.

2 Select one a in each cyclotomic class such that Km(a) = 4.

3 For each a compute the corresponding Boolean function.

4 For each function check its bentness using a fast Walsh-Hadamard
transform.

In step 2 it is possible to e�ciently test one and only one a in each
cyclotomic class using necklaces [Duv88, RSW92, Rus03].
Step 3 is the most time consuming one.
Step 4 is the most memory consuming one.
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Experimental Results

The implementation was made using Sage [S+11] and Cython [BCS10],
performing direct calls to Givaro [DGG+08], NTL [Sho08] and
gf2x [BGTZ08] libraries for e�cient manipulation of �nite �eld elements
and construction of Boolean functions.

m Nb. of cyclotomic classes Time All bent?

4 1 <1s yes

6 1 <1s yes

8 2 <1s yes

10 3 4s yes

12 6 130s yes

14 8 3000s yes

16 14 82000s yes

18 20 - -
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Thank you for your attention.
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Charpin-Gong criterion

Charpin and Gong [CG08] gave the following characterization of
hyperbentness for a large class of Boolean functions.

Theorem ([CG08])

Let

far(x) =
∑
r∈R

Trn1

(
arx

r(2m−1)
)
,

ar ∈ F2m , where R ⊆ S. Let gar(x) =
∑

r∈R Trm1 (arDr(x)). Then far is

hyperbent i�∑
x∈F∗

2m

χ
(
Trm1

(
x−1

)
+ gar(x)

)
= 2m − 2 wt(gar)− 1 .
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Mesnager criterion

Mesnager [Mes10] gave a characterization of hyperbentness for another
large class of Boolean functions

Theorem ([Mes10])

Let m be odd, b a primitive element of F∗4 and

far,b(x) =
∑
r∈R

Trn1

(
arx

r(2m−1)
)

+ Tr2
1

(
bx

2n−1
3

)
.

Then far,b is hyperbent i�

1

∑
x∈F∗

2m ,Trm1 (x−1)=1

χ (gar(D3(x))) = −2;

2

∑
x∈F∗

2m

χ
(
Trm1

(
x−1

)
+ gar(D3(x))

)
= 2m − 2 wt(gar ◦D3) + 3.
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Lison¥k's idea

Lison¥k [Lis08] extended the ideas of Lachaud and Wolfmann to
reformulate the Charpin-Gong criterion in terms of hyperelliptic curves.

Proposition

Let f : F2m → F2m be a function such that f(0) = 0, g = Trm1 (f) and Gf
be the (a�ne) curve de�ned over F2m by

Gf : y2 + y = f(x) .

Then ∑
x∈F∗

2m

χ (g(x)) (= 2m − 1− 2 wt(g)) = −2m − 1 + #Gf .
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Reformulation of CG criterion

Applied to CG criterion we get the following characterization.

Theorem ([Lis11])

Let Har and Gar be the (a�ne) curves de�ned over F2m by

Har : y2 + xy = x+ x2
∑
r∈R

arDr(x) ,

Gar : y2 + y =
∑
r∈R

arDr(x) .

Then far is hyperbent if and only if

#Har −#Gar = −1 .
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Complexity

The smooth projective models of the curves Har and Gar are hyperelliptic.
The polynomial de�ning Har (respectively Gar) is of degree rmax + 2
(respectively rmax), so the curve is of genus (rmax + 1)/2 (respectively
(rmax − 1)/2). The complexity for testing a Boolean function in this family
is then dominated by the computation of the cardinality of a curve of genus
(rmax + 1)/2, which is polynomial in m for a �xed rmax (and so �xed
genera for the curves Har and Gar).

Theorem

Let H be an hyperelliptic curve of genus g de�ned over F2m . There exist

an algorithm to compute the cardinality of H in

O(g3m3(g2 + log2m log logm) log gm log log gm)

bit operations and O(g4m3) memory.
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Reformulation of Mesnager criterion

Theorem

Let H3
ar and G3

ar be the (a�ne) curves de�ned over F2m by

H3
ar : y2 + xy = x+ x2

∑
r∈R

arDr(D3(x)) ,

G3
ar : y2 + y =

∑
r∈R

arDr(D3(x)) .

If b is a primitive element of F4 , then far,b is hyperbent if and only if

#H3
ar −#G3

ar = 3 .

We have to compute the cardinalities of two curves of genera
(3rmax + 1)/2 and (3rmax − 1)/2.

31 / 39



Little trick

Using the fact that x 7→ D3(x) = x3 + x is a permutation when m is odd.

Theorem

If b is a primitive element of F4 , then far,b is hyperbent if and only if

#G3
ar −

1

2
(#Gar + #Har) = −3

2
.

This is slightly more e�cient.
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