
Interactive Oracle Proofs of Proximity
for Algebraic Codes

Sarah Bordage
Ecole Polytechnique, Institut Polytechnique de Paris / LIX & Inria Saclay

Based on joint work with Daniel Augot and Jade Nardi

May 18, 2022

Outline

� Motivations and context

� Local testers and proofs of proximity

� IOP of Proximity for Reed-Solomon codes: the FRI protocol

� IOP of Proximity for multivariate codes

1 / 21

Motivations and context

Verifiable computing

� Completeness: Verifier V always accepts valid proof of correct statement

� Soundness: Cheating prover P̃ is unable to produce convincing proof of false statement

� Additional requirements: zero-knowledge, proof of knowledge (“ZK-SNARK”)

“short” proofs, “fast” proof generation, “fast” verification

2 / 21

Verifiable computing

� Completeness: Verifier V always accepts valid proof of correct statement

� Soundness: Cheating prover P̃ is unable to produce convincing proof of false statement

� Additional requirements: zero-knowledge, proof of knowledge (“ZK-SNARK”)

“short” proofs, “fast” proof generation, “fast” verification

2 / 21

Verifiable computing

� Completeness: Verifier V always accepts valid proof of correct statement

� Soundness: Cheating prover P̃ is unable to produce convincing proof of false statement

� Additional requirements: zero-knowledge, proof of knowledge (“ZK-SNARK”)

“short” proofs, “fast” proof generation, “fast” verification

2 / 21

Genesis: The PCP Theorem

NP is the set of languages L for which the instances x ∈ L have membership proofs w verifiable in poly-
time by a deterministic Turing machine.

NP class

If we tolerate a margin of error, can we inspect only a small portion of a proof ?

Let R be a NP relation, L(R) := {x | ∃w, (x, w) ∈ R}.

� Probabilistic verifier V has input x and oracle access to a probabilistically checkable proof (PCP) π.

� Completeness: If (x, w) ∈ R, then Vπ(x) accepts with probability 1.

� Soundness: If x /∈ L(R), then for all π̃, V π̃(x) accepts with small proba.
π

¸ Encoding of witnesses so that any PCP of a false statement has errors almost everywhere.

Probabilistically checkable proofs are locally testable proofs.

3 / 21

Genesis: The PCP Theorem

NP is the set of languages L for which the instances x ∈ L have membership proofs w verifiable in poly-
time by a deterministic Turing machine.

NP class

If we tolerate a margin of error, can we inspect only a small portion of a proof ?

Let R be a NP relation, L(R) := {x | ∃w, (x, w) ∈ R}.

� Probabilistic verifier V has input x and oracle access to a probabilistically checkable proof (PCP) π.

� Completeness: If (x, w) ∈ R, then Vπ(x) accepts with probability 1.

� Soundness: If x /∈ L(R), then for all π̃, V π̃(x) accepts with small proba.
π

¸ Encoding of witnesses so that any PCP of a false statement has errors almost everywhere.

Probabilistically checkable proofs are locally testable proofs.

3 / 21

Genesis: The PCP Theorem

NP is the set of languages L for which the instances x ∈ L have membership proofs w verifiable in poly-
time by a deterministic Turing machine.

NP class

If we tolerate a margin of error, can we inspect only a small portion of a proof ?

Let R be a NP relation, L(R) := {x | ∃w, (x, w) ∈ R}.

� Probabilistic verifier V has input x and oracle access to a probabilistically checkable proof (PCP) π.

� Completeness: If (x, w) ∈ R, then Vπ(x) accepts with probability 1.

� Soundness: If x /∈ L(R), then for all π̃, V π̃(x) accepts with small proba.
π

¸ Encoding of witnesses so that any PCP of a false statement has errors almost everywhere.

Probabilistically checkable proofs are locally testable proofs.

3 / 21

Checking computations in polylogarithmic time

Every problem in NP has polynomial-size probabilistically checkable proofs verifiable by reading a con-
stant number of bits.

PCP Theorem [..., AS92, ALMSS98, ...]

Based on the PCP theorem: there are polylogarithmic-size non-interactive arguments for NP (in the ROM).

[Kilian92, Micali95]

Notable application of probabilistic proof systems (PCPs, IPs, and variants):
super fast verification of long computations.

4 / 21

Encoding computations and the role of proximity testing

� Arithmetization: Reduce computational problem (captured by relation R) to an algebraic problem
involving low-degree polynomials over F so that:

(x, w) ∈ R ⇐⇒ some polynomials (related to w) satisfy some polynomial equations (?) (related to x).

� On input (x, w), Prover P computes a PCP π for the statement “(x, w) ∈ R”.

Roughly speaking, π is an encoding of w using low-degree polynomial functions.

� Prover P commits to π.

� Verifier V asks for certain symbols of π and (probabilistically) checks:
Consistency test: the message associated to π is consistent with (?),
Proximity test: π is close to a certain polynomial code C.

(Note that V does not know w.)

Computational
Integrity Relation R Arithmetization Proximity testing for C

5 / 21

Encoding computations and the role of proximity testing

� Arithmetization: Reduce computational problem (captured by relation R) to an algebraic problem
involving low-degree polynomials over F so that:

(x, w) ∈ R ⇐⇒ some polynomials (related to w) satisfy some polynomial equations (?) (related to x).

� On input (x, w), Prover P computes a PCP π for the statement “(x, w) ∈ R”.

Roughly speaking, π is an encoding of w using low-degree polynomial functions.

� Prover P commits to π.

� Verifier V asks for certain symbols of π and (probabilistically) checks:
Consistency test: the message associated to π is consistent with (?),
Proximity test: π is close to a certain polynomial code C.

(Note that V does not know w.)

Computational
Integrity Relation R Arithmetization Proximity testing for C

5 / 21

Encoding computations and the role of proximity testing

� Arithmetization: Reduce computational problem (captured by relation R) to an algebraic problem
involving low-degree polynomials over F so that:

(x, w) ∈ R ⇐⇒ some polynomials (related to w) satisfy some polynomial equations (?) (related to x).

� On input (x, w), Prover P computes a PCP π for the statement “(x, w) ∈ R”.

Roughly speaking, π is an encoding of w using low-degree polynomial functions.

� Prover P commits to π.

� Verifier V asks for certain symbols of π and (probabilistically) checks:
Consistency test: the message associated to π is consistent with (?),
Proximity test: π is close to a certain polynomial code C.

(Note that V does not know w.)

Computational
Integrity Relation R Arithmetization Proximity testing for C

5 / 21

Encoding computations and the role of proximity testing

� Arithmetization: Reduce computational problem (captured by relation R) to an algebraic problem
involving low-degree polynomials over F so that:

(x, w) ∈ R ⇐⇒ some polynomials (related to w) satisfy some polynomial equations (?) (related to x).

� On input (x, w), Prover P computes a PCP π for the statement “(x, w) ∈ R”.

Roughly speaking, π is an encoding of w using low-degree polynomial functions.

� Prover P commits to π.

� Verifier V asks for certain symbols of π and (probabilistically) checks:
Consistency test: the message associated to π is consistent with (?),
Proximity test: π is close to a certain polynomial code C.

(Note that V does not know w.)

Computational
Integrity Relation R Arithmetization Proximity testing for C

5 / 21

Encoding computations and the role of proximity testing

� Arithmetization: Reduce computational problem (captured by relation R) to an algebraic problem
involving low-degree polynomials over F so that:

(x, w) ∈ R ⇐⇒ some polynomials (related to w) satisfy some polynomial equations (?) (related to x).

� On input (x, w), Prover P computes a PCP π for the statement “(x, w) ∈ R”.

Roughly speaking, π is an encoding of w using low-degree polynomial functions.

� Prover P commits to π.

� Verifier V asks for certain symbols of π and (probabilistically) checks:
Consistency test: the message associated to π is consistent with (?),
Proximity test: π is close to a certain polynomial code C.

(Note that V does not know w.)

Computational
Integrity Relation R Arithmetization Proximity testing for C

5 / 21

Oracle accesses in real life

In practice, oracles are replaced by cryptographic commitments (Merkle trees)

commit = 1 hash opening at a single location = log(|oracle|) hashes

6 / 21

Local testers and proofs of proximity

Local testers

Given some domain D, a (linear) code C ⊆ FD is a F-vector space of functions from D to F.

A local tester for a code C ⊆ FD
q is a probabilistic algorithm V that

is given oracle access to f ∈ FD , samples Q ⊂ D, queries f on Q and
satisfies:

Completeness: if f ∈ C, V f (C) always accepts.
Soundness: if f is δ-far from C, Pr[V f (C) accepts] ≤ ε.

Local tester for a code

Codes with sublinear local testers are locally testable codes.

f

7 / 21

Multivariate codes

Let L ⊆ F and d < |L|.

� Tensor product of RS codes:

RS[L, d]⊗m = { f : Lm → F | f evaluation of a poly in F[X1, . . . , Xm] with individual degrees < d}
� Reed-Muller codes:

RM[L, d, m] = { f : Lm → F | f evaluation of a poly in F[X1, . . . , Xm] of total degree < d}

Def Multivariate polynomial codes

Remark: We consider m-wise tensor products to simplify the presentation.

8 / 21

Multivariate polynomial codes are locally testable

f

[BFL91, BFLS91, FHS94, PS94, ...]
Individual degree: query d + 1 points
along a random axis-parallel line.

[RS96, AS92, ALMSS98, ...]
Total degree: query d + 1 points
along a random line in Fm.
(Require evaluation domain = Fm)

With only oracle access to f
¸ require at least d queries

Most works on probabilistic proof systems use multivariate polynomials.

9 / 21

Multivariate polynomial codes are locally testable

f

[BFL91, BFLS91, FHS94, PS94, ...]
Individual degree: query d + 1 points
along a random axis-parallel line.

[RS96, AS92, ALMSS98, ...]
Total degree: query d + 1 points
along a random line in Fm.
(Require evaluation domain = Fm)

With only oracle access to f
¸ require at least d queries

Most works on probabilistic proof systems use multivariate polynomials.

9 / 21

Multivariate polynomial codes are locally testable

f

[BFL91, BFLS91, FHS94, PS94, ...]
Individual degree: query d + 1 points
along a random axis-parallel line.

[RS96, AS92, ALMSS98, ...]
Total degree: query d + 1 points
along a random line in Fm.
(Require evaluation domain = Fm)

With only oracle access to f
¸ require at least d queries

Most works on probabilistic proof systems use multivariate polynomials.

9 / 21

Multivariate polynomial codes are locally testable

f

[BFL91, BFLS91, FHS94, PS94, ...]
Individual degree: query d + 1 points
along a random axis-parallel line.

[RS96, AS92, ALMSS98, ...]
Total degree: query d + 1 points
along a random line in Fm.
(Require evaluation domain = Fm)

With only oracle access to f
¸ require at least d queries

Most works on probabilistic proof systems use multivariate polynomials.

9 / 21

Oracle proofs of proximity

Probabilistically Checkable Proof of Proximity (PCPP):

f

oracle proof of proximity

� Relevant measures: prover time, verifier time, proof length, query complexity

� For multivariate codes: PCPs of Proximity enable constant query complexity, but prover time is too high
for interesting applications.

� Also enable proximity testing with sublinear query complexity for non-locally testable codes

e.g. Reed-Solomon codes [BS08]

10 / 21

Oracle proofs of proximity

Probabilistically Checkable Proof of Proximity (PCPP):

f

oracle proof of proximity

� Relevant measures: prover time, verifier time, proof length, query complexity

� For multivariate codes: PCPs of Proximity enable constant query complexity, but prover time is too high
for interesting applications.

� Also enable proximity testing with sublinear query complexity for non-locally testable codes

e.g. Reed-Solomon codes [BS08]

10 / 21

Oracle proofs of proximity

Probabilistically Checkable Proof of Proximity (PCPP):

f

oracle proof of proximity

� Relevant measures: prover time, verifier time, proof length, query complexity

� For multivariate codes: PCPs of Proximity enable constant query complexity, but prover time is too high
for interesting applications.

� Also enable proximity testing with sublinear query complexity for non-locally testable codes

e.g. Reed-Solomon codes [BS08]

10 / 21

Interactive oracle proofs of proximity

P V
f0 = f

z0

f1
z1

f2

...
zr−1

fr

An Interactive Oracle Proof of Proximity (IOPP) (P ,V) for
C with soundness error s : (0, 1]→ [0, 1] satisfies:

Completeness
If f ∈ C, then ∃P Pr[〈P(f),V f 〉 = 1] = 1.

Soundness
If f is δ-far from C,
Then, for all unbounded P̃ , Pr[〈P̃ ,V f 〉 = 1] ≤ s(δ).

Def IOPP for a Code

Relevant measures: prover time, proof length, verifier time, query complexity, round complexity

11 / 21

Reed-Solomon IOPP

Given domain L ⊆ F, degree bound d < |L|, RSL, d :=
{

f|L : L→ F | f ∈ F[X], deg f < d
}

.

Def Reed-Solomon code

Without help from a prover: d + 1 queries are necessary and su�cient.

But for applications to probabilistic proofs, |L| = Θ(d) and d ≈ size of the computation to be verified.

IOP of Proximity for RS[L, d] where L is a subgroup of (F,+) or (F×,×) of large smooth order with

� logarithmic query complexity, (with respect to |L|)
� logarithmic verifier,

� linear prover.

FRI protocol [BBHR18]

The FRI protocol is a crucial building-block of some proof systems deployed in the real-world with
post-quantum security and no trusted setup (“Stark” proofs [BBHR19]).

12 / 21

Reed-Solomon IOPP

Given domain L ⊆ F, degree bound d < |L|, RSL, d :=
{

f|L : L→ F | f ∈ F[X], deg f < d
}

.

Def Reed-Solomon code

Without help from a prover: d + 1 queries are necessary and su�cient.
But for applications to probabilistic proofs, |L| = Θ(d) and d ≈ size of the computation to be verified.

IOP of Proximity for RS[L, d] where L is a subgroup of (F,+) or (F×,×) of large smooth order with

� logarithmic query complexity, (with respect to |L|)
� logarithmic verifier,

� linear prover.

FRI protocol [BBHR18]

The FRI protocol is a crucial building-block of some proof systems deployed in the real-world with
post-quantum security and no trusted setup (“Stark” proofs [BBHR19]).

12 / 21

Reed-Solomon IOPP

Given domain L ⊆ F, degree bound d < |L|, RSL, d :=
{

f|L : L→ F | f ∈ F[X], deg f < d
}

.

Def Reed-Solomon code

Without help from a prover: d + 1 queries are necessary and su�cient.
But for applications to probabilistic proofs, |L| = Θ(d) and d ≈ size of the computation to be verified.

IOP of Proximity for RS[L, d] where L is a subgroup of (F,+) or (F×,×) of large smooth order with

� logarithmic query complexity, (with respect to |L|)
� logarithmic verifier,

� linear prover.

FRI protocol [BBHR18]

The FRI protocol is a crucial building-block of some proof systems deployed in the real-world with
post-quantum security and no trusted setup (“Stark” proofs [BBHR19]).

12 / 21

IOP of Proximity for polynomial codes

Code Prover Verifier Query Length Rounds
[BBHR18] RS < 8N < 8 log N < 2 log N < N < log N

[ABN21] RS⊗m < 8N < 8 log N < 2 log N < N < log N

[ABN21] RM < (2m + 7)N < 2m (5
4 + 7

m
)

log N < 2m

m log N < N
2m−1 <

log N
m

Inspired from the FRI protocol, we can construct interactive oracle proofs of proximity (IOPP) for
multivariate polynomial codes that are fast to generate and exponentially faster to verify.

Block length is N, number of variables is m. Complexities counted in F-ops and field elements.

Remark: regarding SNARKs applications, constant rate codes ¸ shorter proofs (m = constant)

13 / 21

IOP of Proximity for Reed-Solomon codes:
the FRI protocol

Halve the size of the problem

Idea: recursively halve the size of the problem via “random folding”.

Assume F has a multiplicative subgroup L of order 2n, char(F) 6= 2.
The square map q : x 7→ x2 is 2-to-1 from L to q(L).

Reduce proximity to RS[L, d] ¸ proximity to RS[q(L), d/2].

Given arbitrary function f : L→ F,
� Decompose f into two parts:

f (x) = g0(x2) + xg1(x2) where deg gi ≤ deg f
2 .

� For z ∈ F, define Fold [f , z] : q(L)→ F by

Fold [f , z] (y) = g0(y) + zg1(y).

If deg f < d, then
deg g0, deg g1 < d/2.

Any y ∈ q(L) has 2 distinct square roots x,−x ∈ L.
Linear system =⇒ g0(y) =

f (x)+ f (−x)
2 and g1(y) =

f (x)− f (−x)
2x .

How to compute Fold [f , z]?

14 / 21

Halve the size of the problem

Idea: recursively halve the size of the problem via “random folding”.

Assume F has a multiplicative subgroup L of order 2n, char(F) 6= 2.
The square map q : x 7→ x2 is 2-to-1 from L to q(L).

Reduce proximity to RS[L, d] ¸ proximity to RS[q(L), d/2].

Given arbitrary function f : L→ F,
� Decompose f into two parts:

f (x) = g0(x2) + xg1(x2) where deg gi ≤ deg f
2 .

� For z ∈ F, define Fold [f , z] : q(L)→ F by

Fold [f , z] (y) = g0(y) + zg1(y).

If deg f < d, then
deg g0, deg g1 < d/2.

Any y ∈ q(L) has 2 distinct square roots x,−x ∈ L.
Linear system =⇒ g0(y) =

f (x)+ f (−x)
2 and g1(y) =

f (x)− f (−x)
2x .

How to compute Fold [f , z]?

14 / 21

Halve the size of the problem

Idea: recursively halve the size of the problem via “random folding”.

Assume F has a multiplicative subgroup L of order 2n, char(F) 6= 2.
The square map q : x 7→ x2 is 2-to-1 from L to q(L).

Reduce proximity to RS[L, d] ¸ proximity to RS[q(L), d/2].

Given arbitrary function f : L→ F,

� Decompose f into two parts:

f (x) = g0(x2) + xg1(x2) where deg gi ≤ deg f
2 .

� For z ∈ F, define Fold [f , z] : q(L)→ F by

Fold [f , z] (y) = g0(y) + zg1(y).

If deg f < d, then
deg g0, deg g1 < d/2.

Any y ∈ q(L) has 2 distinct square roots x,−x ∈ L.
Linear system =⇒ g0(y) =

f (x)+ f (−x)
2 and g1(y) =

f (x)− f (−x)
2x .

How to compute Fold [f , z]?

14 / 21

Halve the size of the problem

Idea: recursively halve the size of the problem via “random folding”.

Assume F has a multiplicative subgroup L of order 2n, char(F) 6= 2.
The square map q : x 7→ x2 is 2-to-1 from L to q(L).

Reduce proximity to RS[L, d] ¸ proximity to RS[q(L), d/2].

Given arbitrary function f : L→ F,
� Decompose f into two parts:

f (x) = g0(x2) + xg1(x2) where deg gi ≤ deg f
2 .

� For z ∈ F, define Fold [f , z] : q(L)→ F by

Fold [f , z] (y) = g0(y) + zg1(y).

If deg f < d, then
deg g0, deg g1 < d/2.

Any y ∈ q(L) has 2 distinct square roots x,−x ∈ L.
Linear system =⇒ g0(y) =

f (x)+ f (−x)
2 and g1(y) =

f (x)− f (−x)
2x .

How to compute Fold [f , z]?

14 / 21

Halve the size of the problem

Idea: recursively halve the size of the problem via “random folding”.

Assume F has a multiplicative subgroup L of order 2n, char(F) 6= 2.
The square map q : x 7→ x2 is 2-to-1 from L to q(L).

Reduce proximity to RS[L, d] ¸ proximity to RS[q(L), d/2].

Given arbitrary function f : L→ F,
� Decompose f into two parts:

f (x) = g0(x2) + xg1(x2) where deg gi ≤ deg f
2 .

� For z ∈ F, define Fold [f , z] : q(L)→ F by

Fold [f , z] (y) = g0(y) + zg1(y).

If deg f < d, then
deg g0, deg g1 < d/2.

Any y ∈ q(L) has 2 distinct square roots x,−x ∈ L.
Linear system =⇒ g0(y) =

f (x)+ f (−x)
2 and g1(y) =

f (x)− f (−x)
2x .

How to compute Fold [f , z]?

14 / 21

Halve the size of the problem

Idea: recursively halve the size of the problem via “random folding”.

Assume F has a multiplicative subgroup L of order 2n, char(F) 6= 2.
The square map q : x 7→ x2 is 2-to-1 from L to q(L).

Reduce proximity to RS[L, d] ¸ proximity to RS[q(L), d/2].

Given arbitrary function f : L→ F,
� Decompose f into two parts:

f (x) = g0(x2) + xg1(x2) where deg gi ≤ deg f
2 .

� For z ∈ F, define Fold [f , z] : q(L)→ F by

Fold [f , z] (y) = g0(y) + zg1(y).

If deg f < d, then
deg g0, deg g1 < d/2.

Any y ∈ q(L) has 2 distinct square roots x,−x ∈ L.
Linear system =⇒ g0(y) =

f (x)+ f (−x)
2 and g1(y) =

f (x)− f (−x)
2x .

How to compute Fold [f , z]?

14 / 21

The 3 key properties

1. Completeness:
f ∈ RS[L, d] =⇒ Fold [f , z] ∈ RS[q(L), d/2] for all z ∈ F.

2. Local computability:
Each entry of Fold [f , z] depends on only 2 entries of f , and is computable in O(1) field operations.

3. Distance preservation:
f is far from RS[L, d] =⇒ Fold [f , z] is far from RS[q(L), d/2] w.h.p. over z.

Key properties of folding operators

Let V ⊆ FL be a linear code, g0, g1 ∈ FL, and δ ∈ (0, δ0). (δ0 const. depends on distance of V)
Assume either g0 or g1 is δ-far from V.
Then g0 + zg1 is ≈ δ-far from V w.h.p. over z.

Distance and random combinations [RVW13, AHIV17, BBHR18, BKS18, BGKS20, BCIKS20]

15 / 21

The 3 key properties

1. Completeness:
f ∈ RS[L, d] =⇒ Fold [f , z] ∈ RS[q(L), d/2] for all z ∈ F.

2. Local computability:
Each entry of Fold [f , z] depends on only 2 entries of f , and is computable in O(1) field operations.

3. Distance preservation:
f is far from RS[L, d] =⇒ Fold [f , z] is far from RS[q(L), d/2] w.h.p. over z.

Key properties of folding operators

Let V ⊆ FL be a linear code, g0, g1 ∈ FL, and δ ∈ (0, δ0). (δ0 const. depends on distance of V)
Assume either g0 or g1 is δ-far from V.
Then g0 + zg1 is ≈ δ-far from V w.h.p. over z.

Distance and random combinations [RVW13, AHIV17, BBHR18, BKS18, BGKS20, BCIKS20]

15 / 21

IOPP: COMMIT phase

P ((F, L, d), f) V f (F, L, d)
RS[L, d = 2r]

f0 = f : L→ F

z0
$← F

f1

z1

f2

...
zr−1

fr

Honest prover computes:

f1 = Fold [f0, z0]

f2 = Fold [f1, z1]

...

fr = Fold [fr−1, zr−1] ≡ c ∈ F

Global consistency test:

Sample s ∈ L and check

f1(s2)
?
= Fold [f0, z0] (s2)

f2(s4)
?
= Fold [f1, z1] (s4)

...

fr(s2r
)

?
= Fold [fr−1, zr−1] (s2r

)

Final test: fr
?≡ c ∈ F

Prover running time is linear in |L|,
Query complexity and verifier time are logarithmic.

E�ciency (local computability is key)

16 / 21

IOPP: QUERY phase

V f (F, L, d)
RS[L, d = 2r]

f0 = f : L→ F

z0
$← F

f1

z1

f2

...
zr−1

fr

Honest prover computes:

f1 = Fold [f0, z0]

f2 = Fold [f1, z1]

...

fr = Fold [fr−1, zr−1] ≡ c ∈ F

Global consistency test:

Sample s ∈ L and check

f1(s2)
?
= Fold [f0, z0] (s2)

f2(s4)
?
= Fold [f1, z1] (s4)

...

fr(s2r
)

?
= Fold [fr−1, zr−1] (s2r

)

Final test: fr
?≡ c ∈ F

Prover running time is linear in |L|,
Query complexity and verifier time are logarithmic.

E�ciency (local computability is key)

16 / 21

IOPP: FRI protocol

P ((F, L, d), f) V f (F, L, d)
RS[L, d = 2r]

f0 = f : L→ F

z0
$← F

f1

z1

f2

...
zr−1

fr

Honest prover computes:

f1 = Fold [f0, z0]

f2 = Fold [f1, z1]

...

fr = Fold [fr−1, zr−1] ≡ c ∈ F

Global consistency test:

Sample s ∈ L and check

f1(s2)
?
= Fold [f0, z0] (s2)

f2(s4)
?
= Fold [f1, z1] (s4)

...

fr(s2r
)

?
= Fold [fr−1, zr−1] (s2r

)

Final test: fr
?≡ c ∈ F

If f ∈ RS[L, d], V accepts.

Completeness

Prover running time is linear in |L|,
Query complexity and verifier time are logarithmic.

E�ciency (local computability is key)

16 / 21

IOPP: FRI protocol

P ((F, L, d), f) V f (F, L, d)
RS[L, d = 2r]

f0 = f : L→ F

z0
$← F

f1

z1

f2

...
zr−1

fr

Honest prover computes:

f1 = Fold [f0, z0]

f2 = Fold [f1, z1]

...

fr = Fold [fr−1, zr−1] ≡ c ∈ F

Global consistency test:

Sample s ∈ L and check

f1(s2)
?
= Fold [f0, z0] (s2)

f2(s4)
?
= Fold [f1, z1] (s4)

...

fr(s2r
)

?
= Fold [fr−1, zr−1] (s2r

)

Final test: fr
?≡ c ∈ F

Prover running time is linear in |L|,
Query complexity and verifier time are logarithmic.

E�ciency (local computability is key)

16 / 21

FRI Protocol: Soundness

Folding preserves distance to the code

⇓

Let ε, δ > 0 such that ε <
√

ρ/20 and δ < 1−√ρ− ε.
(

ρ = d
|L|

)
Suppose f is δ-far from RS[L, d]. Then, after t repetitions of the QUERY phase,

Pr[V accepts] ≤ d2

(2ε)7 |F|︸ ︷︷ ︸
errcommit

+ (1− δ)t︸ ︷︷ ︸
errquery

.

Soundness of FRI [BBHR18, BKS18, BGKS20, BCIKS20]

17 / 21

IOPs of Proximity for multivariate codes

Folding tensor product of RS codes

The tensor structure enables to fold along one dimension at a time.

� Start by folding along the first dimension:

(q : x 7→ x2)

ó Write f :
m

∏
i=1

Li → F as

f (x1, x2, . . . , xm) = g0(x2
1, x2, . . . , xm) + x1g1(x2

1, x2, . . . , xm)

ó For z ∈ F, define Fold [f , z] : q(L1)×∏m
i=2 Li → F by

Fold [f , z] (y, x) = g0(y, x) + zg1(y, x)

ó After log d rounds, expected x1-degree = 0

� Repeat for each of the other m− 1 variables.

� After a total of m log d rounds, final code has dimension 1.

� Completeness

� Local computability � Distance preservation

18 / 21

Folding tensor product of RS codes

The tensor structure enables to fold along one dimension at a time.

� Start by folding along the first dimension:

(q : x 7→ x2)

ó Write f :
m

∏
i=1

Li → F as

f (x1, x2, . . . , xm) = g0(x2
1, x2, . . . , xm) + x1g1(x2

1, x2, . . . , xm)

ó For z ∈ F, define Fold [f , z] : q(L1)×∏m
i=2 Li → F by

Fold [f , z] (y, x) = g0(y, x) + zg1(y, x)

ó After log d rounds, expected x1-degree = 0

� Repeat for each of the other m− 1 variables.

� After a total of m log d rounds, final code has dimension 1.

� Completeness � Local computability � Distance preservation

18 / 21

Folding tensor product of RS codes

The tensor structure enables to fold along one dimension at a time.

� Start by folding along the first dimension:

(q : x 7→ x2)

ó Write f :
m

∏
i=1

Li → F as

f (x1, x2, . . . , xm) = g0(x2
1, x2, . . . , xm) + x1g1(x2

1, x2, . . . , xm)

ó For z ∈ F, define Fold [f , z] : q(L1)×∏m
i=2 Li → F by

Fold [f , z] (y, x) = g0(y, x) + zg1(y, x)

ó After log d rounds, expected x1-degree = 0

� Repeat for each of the other m− 1 variables.

� After a total of m log d rounds, final code has dimension 1.

� Completeness � Local computability � Distance preservation

18 / 21

Folding tensor product of RS codes

The tensor structure enables to fold along one dimension at a time.

� Start by folding along the first dimension: (q : x 7→ x2)

ó Write f :
m

∏
i=1

Li → F as

f (x1, x2, . . . , xm) = g0(x2
1, x2, . . . , xm) + x1g1(x2

1, x2, . . . , xm)

ó For z ∈ F, define Fold [f , z] : q(L1)×∏m
i=2 Li → F by

Fold [f , z] (y, x) = g0(y, x) + zg1(y, x)

ó After log d rounds, expected x1-degree = 0

� Repeat for each of the other m− 1 variables.

� After a total of m log d rounds, final code has dimension 1.

� Completeness � Local computability � Distance preservation

18 / 21

Folding tensor product of RS codes

The tensor structure enables to fold along one dimension at a time.

� Start by folding along the first dimension: (q : x 7→ x2)

ó Write f :
m

∏
i=1

Li → F as

f (x1, x2, . . . , xm) = g0(x2
1, x2, . . . , xm) + x1g1(x2

1, x2, . . . , xm)

ó For z ∈ F, define Fold [f , z] : q(L1)×∏m
i=2 Li → F by

Fold [f , z] (y, x) = g0(y, x) + zg1(y, x)

ó After log d rounds, expected x1-degree = 0

� Repeat for each of the other m− 1 variables.

� After a total of m log d rounds, final code has dimension 1.

� Completeness � Local computability � Distance preservation

18 / 21

Folding tensor product of RS codes

The tensor structure enables to fold along one dimension at a time.

� Start by folding along the first dimension: (q : x 7→ x2)

ó Write f :
m

∏
i=1

Li → F as

f (x1, x2, . . . , xm) = g0(x2
1, x2, . . . , xm) + x1g1(x2

1, x2, . . . , xm)

ó For z ∈ F, define Fold [f , z] : q(L1)×∏m
i=2 Li → F by

Fold [f , z] (y, x) = g0(y, x) + zg1(y, x)

ó After log d rounds, expected x1-degree = 0

� Repeat for each of the other m− 1 variables.

� After a total of m log d rounds, final code has dimension 1.

� Completeness � Local computability � Distance preservation

18 / 21

Folding tensor product of RS codes

The tensor structure enables to fold along one dimension at a time.

� Start by folding along the first dimension: (q : x 7→ x2)

ó Write f :
m

∏
i=1

Li → F as

f (x1, x2, . . . , xm) = g0(x2
1, x2, . . . , xm) + x1g1(x2

1, x2, . . . , xm)

ó For z ∈ F, define Fold [f , z] : q(L1)×∏m
i=2 Li → F by

Fold [f , z] (y, x) = g0(y, x) + zg1(y, x)

ó After log d rounds, expected x1-degree = 0

� Repeat for each of the other m− 1 variables.

� After a total of m log d rounds, final code has dimension 1.

� Completeness � Local computability � Distance preservation

18 / 21

Folding tensor product of RS codes

The tensor structure enables to fold along one dimension at a time.

� Start by folding along the first dimension: (q : x 7→ x2)

ó Write f :
m

∏
i=1

Li → F as

f (x1, x2, . . . , xm) = g0(x2
1, x2, . . . , xm) + x1g1(x2

1, x2, . . . , xm)

ó For z ∈ F, define Fold [f , z] : q(L1)×∏m
i=2 Li → F by

Fold [f , z] (y, x) = g0(y, x) + zg1(y, x)

ó After log d rounds, expected x1-degree = 0

� Repeat for each of the other m− 1 variables.

� After a total of m log d rounds, final code has dimension 1.

� Completeness � Local computability � Distance preservation

18 / 21

Folding Reed-Muller code

In the total degree case, we fold along every dimension at the same time.

Divide the size of the problem by 2m: RM[L, d, m]¸ RM[q(L), d/2, m]. (q : x 7→ x2)

Let f (X) ∈ F[X1, . . . , Xm].
There is a unique sequence of polynomials (gu)u∈{0,1}m such that

f (X) = ∑
u∈{0,1}m

Xugu(X2
1 , . . . , X2

m), deg gu ≤
⌊

deg f−wH(u)
2

⌋
Lemma: multivariate decomposition

The folding of f : Lm → F w.r.t z ∈ Fm is a function

Fold [f , z] : q(L)m → F

defined as a random linear combination of the gu’s.

Technical subtlety: need to be careful about the distinct degree bounds on the gu’s.

� Completeness � Local computability (with l = 2m) � Distance preservation

19 / 21

Folding Reed-Muller code

In the total degree case, we fold along every dimension at the same time.

Divide the size of the problem by 2m: RM[L, d, m]¸ RM[q(L), d/2, m]. (q : x 7→ x2)

Let f (X) ∈ F[X1, . . . , Xm].
There is a unique sequence of polynomials (gu)u∈{0,1}m such that

f (X) = ∑
u∈{0,1}m

Xugu(X2
1 , . . . , X2

m), deg gu ≤
⌊

deg f−wH(u)
2

⌋
Lemma: multivariate decomposition

The folding of f : Lm → F w.r.t z ∈ Fm is a function

Fold [f , z] : q(L)m → F

defined as a random linear combination of the gu’s.

Technical subtlety: need to be careful about the distinct degree bounds on the gu’s.

� Completeness � Local computability (with l = 2m) � Distance preservation

19 / 21

Folding Reed-Muller code

In the total degree case, we fold along every dimension at the same time.

Divide the size of the problem by 2m: RM[L, d, m]¸ RM[q(L), d/2, m]. (q : x 7→ x2)

Let f (X) ∈ F[X1, . . . , Xm].
There is a unique sequence of polynomials (gu)u∈{0,1}m such that

f (X) = ∑
u∈{0,1}m

Xugu(X2
1 , . . . , X2

m), deg gu ≤
⌊

deg f−wH(u)
2

⌋
Lemma: multivariate decomposition

The folding of f : Lm → F w.r.t z ∈ Fm is a function

Fold [f , z] : q(L)m → F

defined as a random linear combination of the gu’s.

Technical subtlety: need to be careful about the distinct degree bounds on the gu’s.

� Completeness � Local computability (with l = 2m) � Distance preservation

19 / 21

Folding Reed-Muller code

In the total degree case, we fold along every dimension at the same time.

Divide the size of the problem by 2m: RM[L, d, m]¸ RM[q(L), d/2, m]. (q : x 7→ x2)

Let f (X) ∈ F[X1, . . . , Xm].
There is a unique sequence of polynomials (gu)u∈{0,1}m such that

f (X) = ∑
u∈{0,1}m

Xugu(X2
1 , . . . , X2

m), deg gu ≤
⌊

deg f−wH(u)
2

⌋
Lemma: multivariate decomposition

The folding of f : Lm → F w.r.t z ∈ Fm is a function

Fold [f , z] : q(L)m → F

defined as a random linear combination of the gu’s.

Technical subtlety: need to be careful about the distinct degree bounds on the gu’s.

� Completeness � Local computability (with l = 2m) � Distance preservation

19 / 21

Folding Reed-Muller code

In the total degree case, we fold along every dimension at the same time.

Divide the size of the problem by 2m: RM[L, d, m]¸ RM[q(L), d/2, m]. (q : x 7→ x2)

Let f (X) ∈ F[X1, . . . , Xm].
There is a unique sequence of polynomials (gu)u∈{0,1}m such that

f (X) = ∑
u∈{0,1}m

Xugu(X2
1 , . . . , X2

m), deg gu ≤
⌊

deg f−wH(u)
2

⌋
Lemma: multivariate decomposition

The folding of f : Lm → F w.r.t z ∈ Fm is a function

Fold [f , z] : q(L)m → F

defined as a random linear combination of the gu’s.

Technical subtlety: need to be careful about the distinct degree bounds on the gu’s.

� Completeness � Local computability (with l = 2m) � Distance preservation

19 / 21

IOPs of Proximity for multivariate codes

Distance-preserving folding operators for each code of a sequence of codes (Ci)0≤i≤r

=⇒ IOP of Proximity for the code C0.

[ABN21]

RS[L, d]⊗m has an IOPP (P ,V) satisfying
rounds = log dm

queries = 2 log dm + 1
prover time ≤ 8|Lm|
verifier time ≤ 8 log dm

proof length < |Lm|

Theorem [ABN21]

RM[L, d, m] has an IOPP (P ,V) satisfying
rounds = log d
queries = 2m log d + 1
prover time < (2m + 7)|Lm|
verifier time < 2m(5

4 m + 7)(log d)
proof length < |Lm|/(2m − 1)

Theorem [ABN21]

Remark: we also need L ⊂ F to be a multiplicative or additive subgroup of F.

20 / 21

IOPs of Proximity for multivariate codes

Distance-preserving folding operators for each code of a sequence of codes (Ci)0≤i≤r

=⇒ IOP of Proximity for the code C0.

[ABN21]

RS[L, d]⊗m has an IOPP (P ,V) satisfying
rounds = log dm

queries = 2 log dm + 1
prover time ≤ 8|Lm|
verifier time ≤ 8 log dm

proof length < |Lm|

Theorem [ABN21]

RM[L, d, m] has an IOPP (P ,V) satisfying
rounds = log d
queries = 2m log d + 1
prover time < (2m + 7)|Lm|
verifier time < 2m(5

4 m + 7)(log d)
proof length < |Lm|/(2m − 1)

Theorem [ABN21]

Remark: we also need L ⊂ F to be a multiplicative or additive subgroup of F.

20 / 21

Conclusion

Let’s recap:

� Proximity tests for linear codes play a role in verifiable computing and ZK proofs (ex: FRI [BBHR18]).

� Inspired by FRI protocol for RS codes, we gave IOPPs for multivariate codes with similar e�ciency.

� The ability to define distance-preserving folding operators is su�cient to construct e�cient IOPPs.

� Folding-based approach also applies to AG codes [BLNR22] (smaller alphabets, fewer restrictions on field
structure)

Open questions:

� Would {RS⊗m, RM, AG}-based succinct arguments improve concrete e�ciency?

� Could we improve soundness/queries trade-o�s?

� Practical IOPP with sublogarithmic query complexity? (in theory, O(1) queries)

Thank you!

21 / 21

Conclusion

Let’s recap:

� Proximity tests for linear codes play a role in verifiable computing and ZK proofs (ex: FRI [BBHR18]).

� Inspired by FRI protocol for RS codes, we gave IOPPs for multivariate codes with similar e�ciency.

� The ability to define distance-preserving folding operators is su�cient to construct e�cient IOPPs.

� Folding-based approach also applies to AG codes [BLNR22] (smaller alphabets, fewer restrictions on field
structure)

Open questions:

� Would {RS⊗m, RM, AG}-based succinct arguments improve concrete e�ciency?

� Could we improve soundness/queries trade-o�s?

� Practical IOPP with sublogarithmic query complexity? (in theory, O(1) queries)

Thank you!

21 / 21

Conclusion

Let’s recap:

� Proximity tests for linear codes play a role in verifiable computing and ZK proofs (ex: FRI [BBHR18]).

� Inspired by FRI protocol for RS codes, we gave IOPPs for multivariate codes with similar e�ciency.

� The ability to define distance-preserving folding operators is su�cient to construct e�cient IOPPs.

� Folding-based approach also applies to AG codes [BLNR22] (smaller alphabets, fewer restrictions on field
structure)

Open questions:

� Would {RS⊗m, RM, AG}-based succinct arguments improve concrete e�ciency?

� Could we improve soundness/queries trade-o�s?

� Practical IOPP with sublogarithmic query complexity? (in theory, O(1) queries)

Thank you!

21 / 21

Conclusion

Let’s recap:

� Proximity tests for linear codes play a role in verifiable computing and ZK proofs (ex: FRI [BBHR18]).

� Inspired by FRI protocol for RS codes, we gave IOPPs for multivariate codes with similar e�ciency.

� The ability to define distance-preserving folding operators is su�cient to construct e�cient IOPPs.

� Folding-based approach also applies to AG codes [BLNR22] (smaller alphabets, fewer restrictions on field
structure)

Open questions:

� Would {RS⊗m, RM, AG}-based succinct arguments improve concrete e�ciency?

� Could we improve soundness/queries trade-o�s?

� Practical IOPP with sublogarithmic query complexity? (in theory, O(1) queries)

Thank you!

21 / 21

Conclusion

Let’s recap:

� Proximity tests for linear codes play a role in verifiable computing and ZK proofs (ex: FRI [BBHR18]).

� Inspired by FRI protocol for RS codes, we gave IOPPs for multivariate codes with similar e�ciency.

� The ability to define distance-preserving folding operators is su�cient to construct e�cient IOPPs.

� Folding-based approach also applies to AG codes [BLNR22] (smaller alphabets, fewer restrictions on field
structure)

Open questions:

� Would {RS⊗m, RM, AG}-based succinct arguments improve concrete e�ciency?

� Could we improve soundness/queries trade-o�s?

� Practical IOPP with sublogarithmic query complexity? (in theory, O(1) queries)

Thank you!

21 / 21

Conclusion

Let’s recap:

� Proximity tests for linear codes play a role in verifiable computing and ZK proofs (ex: FRI [BBHR18]).

� Inspired by FRI protocol for RS codes, we gave IOPPs for multivariate codes with similar e�ciency.

� The ability to define distance-preserving folding operators is su�cient to construct e�cient IOPPs.

� Folding-based approach also applies to AG codes [BLNR22] (smaller alphabets, fewer restrictions on field
structure)

Open questions:

� Would {RS⊗m, RM, AG}-based succinct arguments improve concrete e�ciency?

� Could we improve soundness/queries trade-o�s?

� Practical IOPP with sublogarithmic query complexity? (in theory, O(1) queries)

Thank you!

21 / 21

Conclusion

Let’s recap:

� Proximity tests for linear codes play a role in verifiable computing and ZK proofs (ex: FRI [BBHR18]).

� Inspired by FRI protocol for RS codes, we gave IOPPs for multivariate codes with similar e�ciency.

� The ability to define distance-preserving folding operators is su�cient to construct e�cient IOPPs.

� Folding-based approach also applies to AG codes [BLNR22] (smaller alphabets, fewer restrictions on field
structure)

Open questions:

� Would {RS⊗m, RM, AG}-based succinct arguments improve concrete e�ciency?

� Could we improve soundness/queries trade-o�s?

� Practical IOPP with sublogarithmic query complexity? (in theory, O(1) queries)

Thank you!

21 / 21

Conclusion

Let’s recap:

� Proximity tests for linear codes play a role in verifiable computing and ZK proofs (ex: FRI [BBHR18]).

� Inspired by FRI protocol for RS codes, we gave IOPPs for multivariate codes with similar e�ciency.

� The ability to define distance-preserving folding operators is su�cient to construct e�cient IOPPs.

� Folding-based approach also applies to AG codes [BLNR22] (smaller alphabets, fewer restrictions on field
structure)

Open questions:

� Would {RS⊗m, RM, AG}-based succinct arguments improve concrete e�ciency?

� Could we improve soundness/queries trade-o�s?

� Practical IOPP with sublogarithmic query complexity? (in theory, O(1) queries)

Thank you!

21 / 21

Conclusion

Let’s recap:

� Proximity tests for linear codes play a role in verifiable computing and ZK proofs (ex: FRI [BBHR18]).

� Inspired by FRI protocol for RS codes, we gave IOPPs for multivariate codes with similar e�ciency.

� The ability to define distance-preserving folding operators is su�cient to construct e�cient IOPPs.

� Folding-based approach also applies to AG codes [BLNR22] (smaller alphabets, fewer restrictions on field
structure)

Open questions:

� Would {RS⊗m, RM, AG}-based succinct arguments improve concrete e�ciency?

� Could we improve soundness/queries trade-o�s?

� Practical IOPP with sublogarithmic query complexity? (in theory, O(1) queries)

Thank you!

21 / 21

	Motivations and context
	Local testers and proofs of proximity
	IOP of Proximity for Reed-Solomon codes: the FRI protocol
	IOPs of Proximity for multivariate codes

